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Vers des dynamiques ouvertes en vie artificielle et intelligence
artificielle: une perspective eco-evo-devo

French Abstract

L’évolution naturelle a, au fil de milliards d’années, généré progressivement l’impressionnante diversité
de formes de vie complexes qui peuplent notre planète. Ce phénomène illustre ce que nous appelons
un processus ouvert (open-ended): un système capable de générer continuellement des structures
de plus en plus diversifiées et complexes. Inspiré par ce phénomène ainsi que par d’autres proces-
sus ouverts tels que l’apprentissage développemental humain et l’évolution culturelle, cette thèse ex-
plore les mécanismes clés qui supportent les processus ouverts et la complexité émergente. Située à
l’intersection de la vie artificielle, de l’apprentissage automatique et de l’open-endedness, cette thèse
explore, à travers des simulations, la complexité émergente à différents niveaux d’abstraction. Nous
mettons l’accent sur l’importance de la dynamique de l’environnement et de son interaction avec les
agents adaptatifs dans cette quête de dynamiques ouvertes. En particulier, nous mettons en lumière
les effets majeurs des boucles de rétroaction dynamiques, telles que la co-adaptation au sein d’un
groupe d’agents ou la causalité réciproque agent-environnement – dans laquelle les agents s’adaptent à
l’environnement tout en le modifiant par leur comportement, ce qui, à son tour, modifie l’environnement
et façonne leur adaptation. Pour ce faire, nous nous appuyons sur des méthodes de pointe issues de la
vie artificielle et de l’apprentissage automatique, notamment les automates cellulaires, la recherche de
diversité, la neuroévolution, les systèmes multi-agents et le méta apprentissage par renforcement.

La thèse explore la complexité émergente à différents niveaux d’abstraction. Tout d’abord, elle examine
la genèse de l’individualité dans un environnement simulé initialement sans vie, composé d’éléments
atomiques simples et de règles physiques locales, explorant aussi comment de tels environnements
peuvent amorcer des dynamiques évolutives. Ensuite, en supposant l’existence d’agents et de proces-
sus évolutifs, l’accent est mis sur la manière dont les agents adaptatifs modifient activement leurs
environnements – potentiellement à leur avantage – modifiant ainsi les pressions évolutives. Ces nou-
velles pressions influencent à leur tour les adaptations ultérieures des agents et donc leurs actions
sur l’environnement, créant des boucles de rétroaction qui entraînent perpétuellement de nouvelles
adaptations de manière potentiellement ouverte. Enfin, la recherche explore comment ces change-
ments environnementaux continus peuvent favoriser le développement de mécanismes d’adaptation
plus rapides, permettant aux agents de faire face à cette grande variabilité environnementale. Plus
précisément, nous examinons comment des environnements variables peuvent faciliter l’émergence de
comportements exploratoires efficaces au sein de groupes d’agents.

En investiguant ces phénomènes, cette recherche apporte des éléments pour concevoir des systèmes
capables de démarrer et de maintenir des processus ouverts, reflétant ainsi la richesse et la complexité
adaptative du monde naturel — de l’origine de la vie à l’évolution d’agents généralistes.
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Open-endedness; Systèmes complexes; Vie artificielle; Algorithmes évolutionnaires; Apprentissage par
renforcement multi-agent; Meta-apprentissage.



Towards open-ended dynamics in Artificial Life and Artificial
Intelligence: an eco-evo-devo perspective

Abstract

Natural evolution has, over billions of years, gradually generated the astonishing diversity of complex life
forms that populates our planet. This phenomenon exemplifies what we call an open-ended process: a
system capable of continuously generating increasingly diverse and complex structures. Inspired by this
phenomena as well as other open-ended processes such as human developmental learning and cultural
evolution, this thesis investigates key mechanisms that underpin open-ended processes and emergent
complexity. Situated at the intersection of artificial life, machine learning, and open-endedness, this
thesis explores, in simulations, emergent complexity across varying levels of abstraction. We focus on
the importance of environment dynamics and its interplay with adapting agents in this quest of open-
ended dynamics in silico. In particular, we highlight the major effects of feedback loop dynamics, such as
co-adaptation in a group of agents or agent-environment reciprocal causation – wherein agents adapt
to the environment but also alter it through their own behavior, which in turn modify the environment
and shape their adaptation. For this aim, we rely on diverse state-of-art methods from artificial life and
machine learning, including cellular automata, diversity search, neuroevolution, multi-agent systems
and meta reinforcement learning.

The thesis explores emergent complexity at different levels of abstraction. First, it explores the gen-
esis of individuality within an originally lifeless simulated environment composed of simple atomic
elements and local physical rules, also probing how such environments can bootstrap evolutionary dy-
namics. Next, assuming the existence of agents and evolutionary processes, the focus shifts to how
adapting agents actively modify their environments – potentially to their advantage –thereby altering
evolutionary pressures. These new pressures, in turn, influence the agents’ subsequent adaptations and
therefore actions on the environment, creating feedback loops that perpetually drive new adaptations
in a potentially open-ended way. Finally, the research explores how these continual environmental
changes may foster the development of faster adaptation mechanisms, enabling agents to cope with
this high environmental variability. Specifically, we examine how variable environments can facilitate
the emergence of efficient exploratory behaviors within groups of agents.

By investigating these phenomena, this research contributes foundational insights toward designing
systems capable of bootstrapping and sustaining open-ended processes, ultimately reflecting the rich,
adaptive complexity of the natural world – from the origins of life to the evolution of generalist agents.

Keywords

Open-endedness; Complex systems; Artificial life; Evolutionary algorithms; Multi-agent reinforcement
learning ; Meta-learning.
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Extended French Abstract

L’évolution naturelle a, au cours de milliards d’années, transformé de simples organismes unicellu-
laires en l’incroyable diversité de formes de vie complexes que nous observons aujourd’hui. Au cours
d’un seul essai, ce merveilleux processus a continuellement accru la complexité et la diversité des or-
ganismes qu’il a créés, apparemment sans limite. Ce phénomène illustre ce que nous appelons un
processus ouvert — un système capable de générer continuellement des structures de plus en plus
diversifiées et complexes. Inspiré par ce phénomène ainsi que par d’autres processus ouverts tels que
l’apprentissage développemental humain et l’évolution culturelle, ce travail explore les mécanismes
clés qui sous-tendent les processus ouverts et la complexité émergente. Située à l’intersection de la
vie artificielle, de l’apprentissage automatique et de l’open-endedness, cette thèse explore, à travers
des simulations, la complexité émergente à différents niveaux d’abstraction. Nous mettons l’accent
sur l’importance de la dynamique de l’environnement et de son interaction avec les agents adaptatifs
dans cette quête de dynamiques ouvertes. En particulier, nous mettons en lumière les effets majeurs
des boucles de rétroaction dynamiques, telles que la co-adaptation au sein d’un groupe d’agents ou
la causalité réciproque agent-environnement — dans laquelle les agents s’adaptent à l’environnement
tout en le modifiant par leur comportement, ce qui, à son tour, modifie l’environnement et façonne leur
adaptation. Pour ce faire, nous nous appuyons sur des méthodes de pointe issues de la vie artificielle
et de l’apprentissage automatique, notamment les automates cellulaires, la recherche de diversité, la
neuroévolution, les systèmes multi-agents et le méta-apprentissage par renforcement.

Le premier chapitre 0, introduit les concepts nécessaires à la compréhension de la thèse et présente
la structure globale de la thèse. Il commence par introduire le concept d’open-endedness et son im-
portance. Il présente ensuite le domaine de la vie artificielle et son approche se rapprochant d’une
recherche de complexité émergente (une approche axée sur la complexité émergente). Cela se dif-
férencie de l’approche classique moderne en apprentissage automatique qui optimise des architectures
cognitives prédéfinies pour des objectifs fixes méticuleusement construits (une approche axée sur les
objectifs). Cette thèse se place dans la continuité de travaux récents qui proposent d’abandonner cette
approche axée sur les objectifs pour se concentrer sur des algorithmes capables de générer des struc-
tures plus complexes, si possible de manière ouverte. En particulier, cette thèse se place à la frontière
entre approches en vie artificielle et approches en apprentissage automatique classique. Notamment,
cette thèse se concentre sur l’adaptation à multiples échelles d’agents ainsi que leurs interactions avec
des environnements aux dynamiques complexes. En particulier, elle met en lumière les boucles de
rétroaction agent-agent et agent-environnement et comment celles-ci peuvent mener à des augmenta-
tions de la diversité et complexité notamment vers l’émergence d’agents plus généralistes.

Le premier chapitre se poursuit en introduisant les différentes boucles d’adaptation dans le monde
naturel et leur équivalent en simulation: l’auto-organisation et la maintenance autonome, l’évolution,
l’apprentissage développemental, l’évolution culturelle, et comment celles-ci interagissent entre elles.

Nous abordons ensuite l’importance de l’environnement, et en particulier la causalité réciproque entre
adaptation des agents et environnement, pour obtenir des dynamiques ouvertes. En effet, les agents
ne sont pas seulement les produits de l’évolution, de par leurs actions sur l’environnement (construc-
tion de niche) ils sont des acteurs de l’évolution. Lorsque les agents amènent des changements dans
l’environnement, ceux-ci vont changer les opportunités et pressions de l’environnement menant à de
nouvelles adaptations de la part des agents. Ces nouvelles adaptations peuvent alors de nouveaumener
à des changements d’environnement, etc. Ces causalités réciproques entre agent et environnement sont
appelées dynamiques éco-évolutionnaires et peuvent potentiellement mener à des complexifications
ouvertes. Ce chapitre présente également les dynamiques entre plusieurs agents et comment celles-ci
peuvent aussi mener à une augmentation de la complexité et de la diversité par exemple à travers la
compétition.

Le premier chapitre se finit par la présentation de la structure de la thèse présentée ci-dessous:

Dans le chapitre 1, nous considérons un environnement dépourvu de vie, dans un état initial où il
n’existe littéralement aucun corps (et donc aucune perception, aucune action, aucun agent, aucune



évolution). Notre objectif est d’étudier comment certaines parties d’un tel environnement inanimé
pourraient s’auto-organiser en structures donnant lieu à des proto-formes de vie fonctionnelles et
amorcer leur évolution. Pour ce faire, nous nous appuyons sur des automates cellulaires continus ré-
cents, en utilisant des algorithmes de recherche par diversité pour explorer leur espace des paramètres
à la recherche de phénomènes d’auto-organisation pertinents.

Dans une première contribution, nous appliquons des algorithmes de recherche par diversité et d’apprentissage
par curriculum à des automates cellulaires continus afin de rechercher des règles du système con-
duisant à l’émergence systématique de structures auto-organisées affichant des capacités sensori-motrices
de base – c’est-à-dire des proto-agents capables de réagir à des perturbations de l’environnement.
De manière intéressante, nous découvrons des structures auto-organisées qui semblent capables de
prendre des décisions à l’échelle macroscopique uniquement grâce à la dynamique collective de nom-
breuses parties atomiques, c’est-à-dire sans aucune notion de ”cerveau” central, de capteurs ou d’actionneurs.
De plus, ces agents auto-organisés montrent d’impressionnantes capacités de généralisation à des con-
ditions non observées lors de la recherche.

Notre deuxième contribution explore l’auto-organisation de dynamiques évolutives dans un environ-
nement similaire dépourvu de vie. En particulier, nous étendons les automates cellulaires continus
utilisés dans la première contribution, ce qui nous permet d’introduire des simulations ”multi-espèces”,
où des structures auto-organisées régies par des règles de mise à jour différentes peuvent coexister.
Dans ces simulations multi-espèces, nous observons des dynamiques évolutives émergentes découlant
de la physique du système, sans recours à un algorithme évolutif externe. En particulier, nous observons
une activité évolutive émergente résultant des interactions coopératives ou compétitives entre diverses
”espèces” auto-organisées, encore une fois uniquement grâce à la dynamique collective de nombreuses
parties atomiques.

Le chapitre 1 démontre ainsi l’émergence d’individualité, de cognition de base (sous forme de capac-
ités sensori-motrices) et d’évolution dans un environnement initialement dépourvu de vie, par le biais
d’interactions entre des éléments atomiques simples. Cela aboutit finalement à des environnements
avec des agents adaptatifs, bien séparés de l’environnement, qui prolifèrent et meurent via des interac-
tions avec des entités voisines. Dans la suite, nous considérons ensuite une dichotomie plus classique
entre un environnement et des agents interagissant avec celui-ci, prééquipés de capteurs, d’actionneurs
et de capacités de prise de décision.

Dans le chapitre 2, nous étudions l’interaction entre l’adaptation des agents et la dynamique envi-
ronnementale avec des agents incarnés bien séparés de l’environnement. Plus précisément, nous ex-
plorons les dynamiques éco-évolutives émergentes et les phénomènes de construction de niche, en
nous posant la question suivante : Comment des populations d’agents adaptatifs éco-conçoivent-elles
leur propre environnement en présence de rétroactions éco-évolutives ?. Nous nous concentrons sur
deux contributions principales.

La première contribution présente un système où les agents évoluent continuellement sans aucune
réinitialisation de l’environnement ou de la population, permettant des rétroactions éco-évolutives.
L’environnement est un vaste monde en grille avec une génération complexe de ressources spatio-
temporelles, contenant de nombreux agents, chacun étant contrôlé par un réseau neuronal récurrent
évolutif et se reproduisant localement en fonction de leur physiologie interne. Nous montrons que la
neuroévolution peut fonctionner dans un cadre multi-agents non épisodique écologiquement valide,
trouvant des stratégies collectives de collecte durable en présence d’une interaction complexe entre
dynamiques écologiques et évolutives.

La seconde contribution explore l’émergence de pratiques agricoles au sein d’une population d’agents
utilisant l’apprentissage par renforcement. Situés dans un environnement avec différentes ressources
en compétition, ces agents apprennent à “éco-engineer” leur environnement pour promouvoir la pro-
lifération de ressources bénéfiques. Cette convergence vers des stratégies collectives de construction
de niche met en évidence leur capacité à modifier leur environnement à leur avantage.



Le chapitre 2 introduit ainsi la construction de niches et les rétroactions éco-évolutives. En partic-
ulier, cette interaction complexe entre agents adaptatifs et environnement peut conduire à des envi-
ronnements avec des variations rapides auxquelles les agents doivent faire face.

Dans le chapitre 3, nous contrôlons la variabilité environnementale et étudions comment des stratégies
d’exploration avancées, génériques, collectives et potentiellement ouvertes peuvent émerger chez des
agents adaptatifs exposés à une forte variabilité environnementale.

Notre première contribution exploite des tâches hiérarchiques générées procéduralement pour étudier
l’émergence de l’exploration collective dans un groupe d’agents indépendants. À partir de l’entraînement
sur une distribution diversifiée de tâches où les règles sous-jacentes doivent être découvertes, les
agents apprennent à explorer collectivement les affordances de l’environnement. Ils montrent égale-
ment une généralisation intéressante à de nouvelles tâches et à des chaînes de tâches plus longues
(avec plus d’objets, etc.) non observées pendant l’entraînement.

Dans la seconde contribution, nous passons à des groupes d’agents indépendants avec un mécanisme
d’exploration “autotelic” (créant leurs propres objectifs) prédéfini et étudions l’émergence d’une inten-
tionnalité partagée pour faire face à la variabilité induite par d’autres agents explorateurs. En particulier,
à partir de la maximisation indépendante de leurs récompenses, les agents apprennent à communiquer
et à aligner leurs objectifs, atteignant finalement un apprentissage plus efficace par rapport à des agents
choisissant leurs objectifs indépendamment.

En investiguant ces phénomènes, cette recherche apporte des éléments pour concevoir des systèmes
capables de démarrer et de maintenir des processus ouverts, reflétant ainsi la richesse et la complexité
adaptative du monde naturel — de l’origine de la vie à l’évolution d’agents généralistes.

La thèse se conclut avec des ouvertures sur des perspectives sur la réunion des éléments présentés
dans chaque chapitre en une seule simulation aux dynamiques intéressantes. En particulier, nous
discutons des éléments que nous pensons intéressants pour construire un environnement avec des
dynamiques ouvertes qui pourraient permettre de mener à une diversité d’agents complexes et aux
capacités généralistes. Nous présentons aussi des perspectives sur la dynamique des agents, ainsi que
sur les interactions multi-agents. Nous finissons par des discussions générales sur l’équilibre entre
biais et complexité émergente dans les simulations open-ended, ainsi que sur les challenges inhérents
à la mesure de dynamiques ouvertes, et la potentielle utilité des simulations présentées pour mieux
comprendre l’évolution et en particulier l’évolution humaine.

Disclaimer : Large language models have been used solely as a reformulation tool throughout this
thesis, only to improve the clarity and flow of the text sporadically.
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0.1 Open-endedness

What is it ? Natural evolution has, over billions of years, transformed
simple single-celled organisms into the astonishing diversity of com-
plex life forms we see today. This remarkable process increased the
complexity of organisms it created over and over, seemingly with-
out limit. This phenomenon exemplifies what we call an open-ended
process—a system capable of continuously generating increasingly di-
verse and complex structures.

Natural evolution is not the only example of such a process. It has
also given rise to other open-ended phenomena. For instance, hu-
man skill acquisition can be considered open-ended; humans are
capable of continually learning and mastering increasingly complex
tasks throughout their lifetimes, often building on existing knowledge
like advanced motor skills or intellectual capabilities. Similarly, cul-
tural evolution exhibits open-ended dynamics. The cumulative devel-
opment of culture—manifested in fields such as mathematics, tech-
nology, and art—has led to increasingly sophisticated and abstract
achievements over generations.

Why is it important ? Understanding the principles underlying open-
endedness is an important endeavor for the scientific community [1].
In Life Science, the challenge is to better understand the mechanisms
having generated the immense diversity and complexity of life forms
on Earth. In Computer Science, implementing a process capable of
generating a diversity of increasingly complex problems and solu-
tions would have tremendous implications across a wide range of
scientific domains. Harnessing the power of open-ended processes
could transform domains such as drug discovery, protein search, en-
gineering problems, art, and even science itself [2]. For example, be-
ing capable of reproducing a process similar in its dynamics to open-
ended natural evolution could potentially allow us to achieve human-
like generally intelligent artificial agents and potentially even more
[3].

Artificial Life and the ”bottom up” approach The field of Artificial
Life (Alife) has itself extensively focused on simulating artificial ecosys-
tems and open-ended evolution, with the objective of implementing
a process able to spontaneously generate increasingly diverse and
complex structures, emerging from the dynamics of the system itself
(hence the term ”bottom-up”) [4].

In particular, Alife works often search for the necessary conditions for
complexity to emerge and flourish [5, 6]. They often focus on imple-
menting environments with simple but rich dynamics that can lead
to the emergence of higher complexity. For instance, self-organizing

https://alien-project.org/index.html
https://alien-project.org/index.html
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systems – systems composed of simple atomic entities interacting
together through simple rules potentially leading to complex macro
intelligent entities – are often used as substrates for Alife works [7–
9].

This ”bottom-up approach” is closely related to the idea of open-
ended processes which start from simple conditions and increase
in complexity over and over. In fact, implementing such evolution
and minimal environment might be much easier than directly engi-
neering complex intelligent artificial agents and might also lead to
unexpected interesting behaviors [10].

However, while we have examples of open-ended processes in the
natural world to get inspiration from, we are still far from being able
to reproduce truly open-ended processes through simulations or to
use them to achieve ”generally” intelligent artificial agents. Surpris-
ingly, while natural evolution is our best example of a process capable
of generating such interesting intelligent agents, current Artificial In-
telligence (AI) techniques have little in common with the way natural
evolution works.

Machine learning is currently mostly top down. In fact, even evolu-
tionary algorithms which are historically inspired by natural evolution
(see Sec.0.2.2) most often adopt a ”top down” approach: their main
application is to optimize a solution to a target problem [11, 12] (with
notable exceptions such as Quality-Diversity algorithms that we dis-
cuss below).

Current state of the art machine learning (ML) techniques in gen-
eral tend to focus on this optimization of a highly structured engi-
neered cognitive architecture towards a single predefined fixed ob-
jective. Improvements then come from meticulously engineering bet-
ter cognitive architecture or objective functions [13]. In particular,
with the advent of neural networks as general function approxima-
tions, a lot of effort has been put into trying to improve their archi-
tecture: from multi layers perceptron [14], to convolutional neural
networks (CNNs)[15], recurrent neural networks (RNNs) [16–18], trans-
formers [19], andmore recently, structured state-spacemodels (SSMs)
[20]. Another focus of current machine learning is the data used
to instill knowledge in these cognitive architectures, especially with
the use of supervised learning – training on a labeled training set of
input-output pairs – as the main tool to obtain ”intelligent” artificial
agents.

While these techniques achieved impressive performances for spe-
cific problems, for example in computer vision [21, 22] or recently in
natural language processing [19, 23, 24], their generalization capabil-
ities and reasoning abilities are still questioned [25–28]. In addition,
the emergence of capabilities beyond the training distribution is still
up to debate [26, 29], potentially hinting toward additional compo-
nents needed to get beyond the training data or even the need for
a complete switch of paradigm. In fact, while scaling the amount of
data or cognitive architecture size has been shown to be effective
—often referred to as the “bitter lesson” of machine learning [30]—,
its sufficiency to achieve truly general intelligent artificial agents is
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still an open question, in particular in the quest for artificial agents
capable of continual improvement.

Change of perspective: from ”performance driven approaches” to
”emergent complexity approaches”. Achieving open-endednessmight
require a change of perspective compared to the dominant approach
in machine learning. This dominant approach relies on meticulously
engineered cognitive architectures, optimized against pre-defined ob-
jective functions, and evaluated through benchmarks capturing rel-
evant features of intelligence. We propose to call it ”performance-
driven approaches”, in the sense that proposed architectures are op-
timized according to a user-definedmetric, and argue that it contrasts
with open-ended processes such as natural evolution.

”... The major inspiration for both evolutionary
computation and genetic programming, natu-
ral evolution, innovates through an open-ended
process that lacks a final objective.” [31]

In fact, it is far from trivial to consider natural evolution in terms of
objectives, e.g. maximizing survival and reproduction. For instance,
some species have evolved towards a very short life time (e.g. ephemeral
species such as flies) and others give birth to very few offsprings (e.g.
humans), yet manage to play an important role in their respective
ecosystems. Instead, natural evolution seems to be better character-
ized by the notion of open-endedness than by the notion of objec-
tive [10]. Some approaches in ALife, and to a lesser extent in AI, have
embraced this view and evaluate their simulations in terms of emer-
gent complexity instead of explicit performance [5, 32–40]. Some au-
thors have theorized this view and proposed to abandon, or at least
to reconsider, the ”myth of the objective” [10, 31, 41]. We propose to
call such approaches complexity-driven, in the sense that they con-
sider intelligence as the emergent product of a dynamical system,
in which agents continually adapt to ever-changing environmental
dynamics (by opposition to the performance-driven approaches de-
scribed above, which considers intelligence as a measurable objec-
tive).

In particular, the complexity-driven approach tries to understand the
necessary condition for a process leading to emergent complexity
and general intelligence from a simpler state [3, 5, 10], rather than
trying to directly build it. What we call complexity-driven encom-
passes both: 1) systems where there is no notion of objective at
all, where agents adapt through the dynamic of the system–what is
called ”environment-driven” in Bredeche and Montanier (2012) [42];
and 2) adaptive systems with implicit objectives (also introduced in
[42]) where the objective function only gives partial information on
how to act in a task but might lead to emergent complexity, such as
optimizing for the maximization of energy which can lead to various
complicated behaviors.

While the question remains open and the boundary between implicit
and explicit objectives may be blurry, from a practical perspective,
searching for the necessary conditions to foster the emergence of
complex artificial agents—such as generalist artificial agents—might
be significantly easier than attempting to engineer them directly [3].
For instance, in computer vision, the shift from engineered represen-
tations to learned representations [15, 21] demonstrated that allow-
ing a system to discover solutions autonomously is often far more
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Figure 2: Maze task. The goal position is the green
circle, and the start position is the red circle. The
black dots represents the end position of each tri-
als. Objective based algorithms (d) easily fall into lo-
cal optima, as exemplified by the maze here where
the majority of trials go toward the dead end as it
makes the solution go closer to the goal. On the
other hand, methods based on novelty try to cover
the maze and therefore explore the whole maze ul-
timately leading to trials reaching the goal. Figure
from [61].

effective than designing those solutions manually. In addition, just
as natural evolution flourished by producing a diversity of strategies
to ”solve problems,” approaches based on emergent complexity could
likewise yield a variety of sophisticated and diverse ”solutions” (com-
pared to the performance driven approach often aiming for a single
solution).

Convergence between machine learning, open-endedness and artifi-
cial life. In fact, recent work suggests that ideas fromopen-endedness
could provide a road-map for overcoming ML’s limitations [1, 3, 43].
For example, training systems on an open-ended distribution of tasks
has shown promise in developing general skills [44, 45], showing the
importance of training agents on a wide diversity of rich environ-
ments. A very promising avenue towards this are processes that gen-
erate their own problems and try to solve them, in an open loop [46–
49]. This kind of work necessitates a component generating the prob-
lems and an agent capable of adaptation to solve them.

”To achieve open-endedness, a model must not
only consume knowledge from pre-collected
feedback [...], but also generate new knowledge,
in form of hypotheses, insights or creative out-
puts beyond the human curated training data. A
self-improvement loop should allow the agent
to actively engage in tasks that push the bound-
ary of its knowledge and capabilities...” [43]

In addition to ML benefiting from the ideas of open-endedness, we
observe more and more a kind of convergence between ideas of cur-
rent ML techniques and ideas inspired by open-endedness and Alife,
where both fields benefit from each other.

In particular, Alife works also benefit from machine learning, for ex-
ample with the cognitive architecture developed in classical machine
learning being used in Alife studies [34, 50].

Self-organizing systems used as substrate in environments in Alife are
also proposed as candidates for cognitive architecture in ML [51–55],
for their interesting robustness potentially helping ML with the gener-
alization problem (despite not being state of the art at the moment).
They might also serve as a general architecture whose topology (con-
nections, structure) might themselves adapt by self-organization [56,
57], in opposition to fixed architecture in classical ML, potentially help-
ing in the quest of systems continually increasing in complexity.

Another line of work in machine learning takes inspiration from nat-
ural evolution and open-endedness and tries to find a diversity of
solutions– a field known as quality diversity [58–62]. These works of-
ten use machine learning techniques in combination with diversity
search in order to build an ideally never-ending archive of solutions
to a problem, potentially getting more and more complex using pre-
vious solutions as stepping stones for new ones. In particular, the di-
versity part of these methods might allow to obtain better solutions
by avoiding the trap of local optima [61, 63] (Fig.2).

Finally, foundation models in machine learning (or other highly en-
gineered components) might be a good starting point to help boot-
strap an open-ended loop, for example, with components capable of
generating new problems, such as Large Language Models (LLMs)[46,
64, 65]. However, studying the minimal setup to bootstrap an open-
ended process might as well be easier (and less costly). In particular,
better understanding the process of open-endedness in minimal se-
tups such as simple artificial life ecosystems [5] might be beneficial



0 Introduction 5

to apply it in more complex setups with more complicated cognitive
architecture in ML.

Towards open-ended dynamics in Artificial Life and Artificial Intelli-
gence: an eco-evo-devo perspective. This thesis explores the inter-
section ofmachine learning, artificial life (ALife), and open-endedness,
aiming to bridge the gap between these fields. The long-term aspi-
ration is to establish the foundational conditions necessary for the
open-ended evolution of generalist agents.

Recognizing that achieving this ambitious goal extends beyond the
scope of a single thesis, our focus here is to examine specific tran-
sitions and components that we consider critical to simulate open-
ended dynamics in artificial systems.

In particular, we will focus on the interaction between adaptive artifi-
cial agents and the dynamics of the environment at different scales,
exploring how these interactions can lead to emergent complexity.
More precisely, here are the main ingredients that we’ll explore in
this thesis and develop in the rest of this introduction :

▶ Adaptation AcrossMultiple Scales (Sec.0.2). In the natural world,
adaptation operates acrossmultiple spatio-temporal scales: evo-
lutionary, developmental and cultural. These different scales
strongly interact with each other (Sec.0.2.5). We will argue be-
low that adaptation at multiple scales is central to open-ended
processes and we will rely on state-of-the art AI and ALife meth-
ods to implement it in simulations.

▶ Dynamic environments (Sec.0.3.1). The morphological and be-
havioral complexity of living beings on Earth strongly depends
on the the complexity of the environment they live in [66]. This
environmental complexity is driven by the multiscale dynamics
of environmental changes, such as seasonal cycles, ecosystem
dynamics and the presence of other cooperating or competing
agents. The contributions of this thesis will place environmen-
tal design at the center of our computational approach, propos-
ing diverse simulated environments exposing adaptive agents
to constantly changing constraints and opportunities.

▶ Feedback loops between agents’ adaptation and the dynamics
of their environment (Sec.0.3.2). Based on both previous points,
open-ended dynamics is often conceived as an emergent prop-
erty of complex systems able to self-generate their own prob-
lems and solutions. For instance, while the properties of an
environment implies selective pressures on evolving organisms,
their own evolution in turn modifies environmental properties
and their resulting selective pressures. Such feedback loops
between agents’ adaptation and the dynamics of their own en-
vironment is central in most of our contributions.

In the following of this introduction, we will develop the three main
points made above from a biological, ecological, and computational
perspective. Then we will introduce in more detail the objectives and
contributions of the thesis.
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Figure 3: Conway’s Game of Life cellular au-
tomata[68]. Each cell is updated based on its neigh-
bourood. The self-organization of a collective of
simple cells can enable the emergence of localized
macro structures, such as the ”blinker”, and some-
times mobile ones like the ”glider.”

1: Cellular automata (CA) are, in their classic form, a
grid of “cells” that evolve through time via the same
local “physics-like” laws: Each cell sequentially up-
dates their state based on the states of their neigh-
bours. See Sec.1.1.1 for more details.

Figure 4: Enactivist framework

0.2 Mechanisms of adaptation at multiple
scales

The first component that we’ll cover is agent adaptation; the pro-
cess that allows an agent to cope with environmental complexity. We
cover in this section different levels of adaptation: self-maintenance
(Sec.0.2.1), evolution (Sec.0.2.2), developmental learning (Sec.0.2.3), cul-
tural evolution (Sec.0.2.4) and finally how they interact altogether (Sec.0.2.5)–
covering them in a broad manner in this introduction and referring
to the appropriate sections of the contributions for more details and
related works. For each of the adaptation levels, we draw parallels
between existing frameworks in life science (biology, ecology, and
cognitive science) and computer science (artificial life and artificial
intelligence).

0.2.1 Self-organization and autopoiesis

We here concisely introduce the concepts of autopoiesis and enac-
tivism and refer to Sec.1.2 for a more detailed review.

The most basic level of adaptation is maintaining its integrity de-
spite potential perturbation by the environment, i.e. the ability to
self-maintain and self-regulate. A key example of this is homeosta-
sis, the process by which a system maintains a stable internal state,
such as balancing pH levels or temperature within a specific range.
This capacity for self-maintenance lies at the heart of the concept
of autopoiesis, introduced by Maturana and Varela [67]. Autopoiesis
refers to a system’s ability to produce and sustain itself by generat-
ing and preserving its own components. For Maturana and Varela, au-
topoiesis is not only a defining characteristic of life but also a basis for
cognition: any autopoietic system inherently possesses some level
of cognitive capacity. Examples of autopoietic systems include liv-
ing cells—capable of synthesizing proteins, repairingmembranes, and
maintaining internal balance—or entire organisms like plants and an-
imals, which achieve cellular reproduction, tissue repair, and home-
ostasis (e.g., regulation of temperature, pH, and energy balance).

In Artificial life, autopoiesis is a central concept often framed through
the lens of self-organization. In those works, agents come to ex-
istence through the self-organization of simple parts and maintain
their integrity and stability through their coordination (often display-
ing self-repairing capabilities). Examples of such works span several
artificial substrates such as cellular automata (CA) 1[8, 9, 69–71], ar-
tificial chemistries and generative grammar [72–74], modular robots
[38, 75], and soft robots [76]. In particular, cellular automata, like Con-
way’s Game of Life (Fig.3), have served as simple yet powerful models
for studying the principles underlying autopoiesis [77–80].

This perspective on agency aligns closely with the so-called enactivist
framework (Fig.4) [81, 82], which considers that the agent must come
to existence through the coordination of the low-level elements and
that every part of an individual contributes to cognition. In this view,
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Figure 5: Mechanistic framework

cognition is an embodied, distributed process, deeply rooted in the
system’s material and dynamic organization.

In contrast, classical AI and machine learning typically operate un-
der a ”mechanistic framework” (Fig.5). Here, the agent is assumed
to have a well-defined physical body and an information-processing
brain, interacting with the environment through predefined sensors
and actuators. The agent’s body is treated as separate from the envi-
ronment, and its structural integrity is presumed unperturbed by the
environment. This approach largely bypasses questions of body con-
stitution, focusing instead on optimizing a centralized control unit for
predefined tasks. The enactive view of intelligence—emphasizing self-
organization and the emergence of agency from low-level components—
remains underexplored in mainstream AI.

However, several efforts at the intersection of Alife and classical AI
propose to study Artificial Intelligence under the lens of the enactivist
framework and self-organization, both advocating for their relevance
to better understand the living, but also as a tool to build more robust
artificial agents [51, 52]. Examples include cellular automata being
used as controllers [53], systems leveraging the self-organization in
Hebbian networks [54], and sensorimotor controls in self-assembling
robots [75].

Another line of work directly implements homeostasis as a feature
of the cognitive architecture [83] or as an objective to optimize for
[84].

The concept of autopoietic agents, which ”generate their own parts”,
is also closely related to agents that generate new individuals by cre-
ating new parts. In fact, self-replicators are also a major focus of
autopoietic systems study. In particular, Alife works also often study
the self-organization of self-replicators [6, 71, 72, 85–88] as it is a nec-
essary condition for evolution to emerge in such systems.

0.2.2 Evolution

Biological evolution is perhaps the most typical example of an open-
ended process, where organisms adapt their phenotypic traits through
the transmission, variation, and selection of genetic material and
under environmental selective pressures. The principle is that, de-
pending on the environment, certain traits may be favored, giving
survival or reproduction advantages, ultimately allowing those traits
to be more transmitted to the next generation. Over time, this pro-
cess leads to individuals better adapted to their environment. For
example, Darwin finches are birds whose beaks are sensibly differ-
ent depending on the availability of resources in their local niche:
those in an area where nuts are more present developed over time a
thicker beak while others developed a slender beak to eat nectar or
pluck small insects more easily [89, 90]. In a changing environment
this type of dynamic can possibly lead to increasingly diverse and
complex beings.

As mentioned previously, the field of artificial life –which explores
”life as it could be”– has been trying to reproduce natural evolution
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Figure 6: The Reinforcement Learning loop.

in simulated worlds [5, 32–38, 42, 91]. While a large body of works
in Alife directly implements well-defined evolutionary mechanisms
in the system, the Alife community is also interested in the minimal
requirement for evolution itself to emerge from the dynamic of the
system. In particular, as a first step toward evolutionary dynamic, a
lot of focus has been put on having self-replicators in self-organizing
systems [6, 72, 85–88] potentially also displaying increase in complex-
ity [71]. Those systems, however, still fail to achieve truly open-ended
dynamics.

Natural evolution has also been an inspiration for optimization algo-
rithms such as evolutionary algorithms (EA) [11, 12] that are also of-
ten used as a way to optimize for a certain metric in a ”performance
driven” manner. Those approaches often require the definition of a
”fitness function” that will be used to measure agent performance.
The methods span from more or less ecologically plausible but still
take inspiration from either population mutation, crossover, or selec-
tion. In fact, most EAs share a similar procedure of applying transmis-
sion, variation, and selection on a population of potential solutions to
an optimization problem. They mostly differ in how they encode the
search space and the population : genetic algorithms [92, 93] encode
each individual with a genome (often binary), genetic programming
[94] is similar to genetic algorithms but uses programs as the search
space; evolutionary strategies such as CMA-ES [95] represent individ-
uals with real numbers, and also often encode the population as a
probability distribution [96–98].

Neuroevolution is a specific instance of evolutionary algorithmswhere
the search space is artificial neural networks. This approach can ex-
plore the weights of a neural network [99] or also its architecture
[100, 101]. With the recent advances in computational capabilities,
neuroevolution has been shown to be potentially competitive with
classical machine learning [99, 102, 103]. We refer to 2.1.2 for more
details on Neuroevolution.

0.2.3 Developmental learning

Natural selection has given rise to other adaptation processes operat-
ing at smaller timescales. While evolutionary changes unfold across
generations, organisms in nature might also possess the remarkable
ability to acquire skills during their individual lifetimes through devel-
opmental learning. Consider human development: an infant begins
with limited capabilities but rapidly develops motor skills, and this
learning continues throughout life - going from basic movements to
complex abilities like playing musical instruments or computer pro-
gramming. This developmental trajectory is shaped both by the indi-
vidual’s environment (including social peers) and intrinsic motivation
[104–107] shaping what they choose to explore and learn.

In AI, Reinforcement learning (RL) is often used to model develop-
mental learning (at least on some level). RL provides a computational
framework that captures aspects of developmental learning through
trial and error [108]. In this paradigm, agents learn by receiving pos-
itive or negative feedback from their environment (or their internal
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model), gradually favoring actions that lead to (future) positive re-
wards while avoiding those that result in (future) negative rewards. In
particular, RL agents, through the interaction with the environment,
learn a policy function that maps observations (sensory inputs) to
actions (motor outputs) (Fig.6). We refer to Sec.3.2.4 for a formal defi-
nition of RL.

The field of reinforcement learning led to impressive results in games
(for example in chess or GO [109, 110]), video games (e.g. Atari) [110–
112], and even recent video games requiring advanced real time strat-
egy [113–115], as well as robot control [116–121].

Reinforcement learning also showed interesting results in agents be-
ing capable of learning a variety of tasks. In particular, the field of
goal-conditioned RL which trains a single agent over several tasks,
giving task descriptions to the agent as input to the policy [122, 123].

However, implementing truly continuous general learning in artificial
agents remains a challenge. RL still faces challenges for continual
learning such as plasticity loss [124–130], catastrophic forgetting [131,
132], and most importantly exploration problems [133]. To enhance
exploration capabilities of agents, methods relying on intrinsic mo-
tivation strategies have been introduced [134, 135]. Those methods
give higher incentives to explore, for example, giving a reward for
novel state [136, 137], model prediction error [138–140] ,surprise [141],
(in)competence [142], or empowerement (how much the agent can
”change its environment”) [143].

In addition, RL as it is described most of the time already assumes
that the task is set by the user and given to the agent. This omits
an important part of the developmental learning process in humans
where the selection of a task or a goal is done by the agent itself.
In fact, this goal selection by the agent is an important part of the
whole developmental learning process as it will shape the learning
trajectory of the agent (what he chooses to learn and in which order).
Works on autotelic learning [144, 145] (from the Greek auto (self) and
telos (goal)) focus on implementing learning agents that select their
own goals (and actively try to achieve them) for a more complete pic-
ture of developmental learning. The implemented goal selection pro-
cesses also often include aspects of curiosity, taking inspiration from
human cognition. We refer to Sec.3.2.3 for more details on autotelic
learning.

0.2.4 Cultural evolution

In the human species, and potentially others, skills and knowledge
can be socially transmitted between individuals, potentially adapting
them to their own incentives. This process can result in the cumu-
lative accumulation of diverse and complex cultural traits: an open-
ended process called Cultural Evolution [146]. Cultural evolution can
be seen as a darwinian process where variation, transmission, and
selection lead to adaptation of the culture [146]. Examples of cul-
tural evolution go from skills such as fire control, or tool use, to more
abstract ones such as mathematics. Those pieces of knowledge are
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taught from generation to generation and potentially improved by in-
dividuals, for example seen with the increase in complexity of tools
[147]. Culture allows an agent to adapt fast by benefiting from the
cumulative adaptation of other agents that are socially transmitted
to him. In particular, the knowledge that is transmitted to the agent
would be hard to discover by an isolated agent.

In psychology, cultural evolution is primarily studied under the exper-
imental paradigm of transmission chains, where they study the itera-
tive change of information along a chain of participants transmitting
it [148, 149].

In AI, cultural transmission can be observed with the use of social
partner(s) that allow for faster learning by social interaction: either
through imitation [150–152], or more complicated teacher-student in-
teractions [153], or finally through the sharing of information across
a population of agents potentially allowing them to explore more
broadly, escaping local optima [154, 155].

More recently, with the advent of Large language models, capable of
complex social interaction with a lot of human biases, we observe
works studying the cultural evolution in groups of LLM agents (or
mixed LLM-humans groups) [156] and notably the dynamics of iter-
ated cultural transmission [157, 158].

In artificial life, cultural evolution remains deeply understudied with
a few exceptions [159].

0.2.5 Interactions between multiples scales

As stated previously, the different adaptationmechanismsmentioned
above operate at different scales. Nevertheless, there are a lot of
interactions between those adaptive loops.

First, because some of them emerged from other ones. For exam-
ple, developmental learning emerged from natural evolution, as the
ability to adapt during an agent’s lifetime was favored when environ-
ments were uncertain and changing at the scale of their lifetime [160,
161]. Indeed, developmental learning allows to adapt to changes that
happen at a scale much smaller than the scale at which evolution
operates.

Secondly, the different adaptation mechanisms also interact in mu-
tual ways. For example, the improvement of knowledge in cultural
evolution can often come from the learning of new knowledge through
individual developmental learning, making cultural evolution deeply
intertwined with developmental learning. Similarly, we observe feed-
back loop effects between cultural evolution and evolution, for exam-
ple with gene-culture coevolution exemplified by the coevolution of
milk consumption and the gene responsible for milk digestion [162].

In Evolutionary reinforcement learning, works study the usefulness of
combining reinforcement learning and evolutionary algorithms [163,
164]. In particular, the evolutionary part can be used as a way to
maintain a diversity of behaviors within a population of agents in or-
der to enhance exploration and escape local optima (while the RL
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Figure 8: Meta-learning. Fig from [169].
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part is often used as a ”finetuning”). This is exemplified in works us-
ing population-based training with RL [44, 165, 166] including quality
diversity works which explicitly search for diversity with evolutionary
algorithms and use RL to improve the solutions [167, 168].

In Meta learning [169, 171–173] (Fig.9), or learning to learn, studies ex-
plore how an outer adaptive loop (that some authors view as analo-
gous to an evolutionary scale) can optimize an inner adaptive loop
(that some authors view as analogous to a developmental scale) on
a wide distribution of learning tasks. This very general principle of-
ten approaches the problem by using the outer loop to meta-learn
the parameters of the inner adaptive loop to make it more effective
(Fig.8). The parameters that are meta-learned range from simple hy-
perparameters such as the learning rate of the inner loop, to more
complex ones such as the parameters of a class of objective func-
tions [174, 175], or parameters shaping the whole update rule [176]. In
particular, the outer loop can meta-learn the parameters of a neu-
ral network whose internal dynamic will be able to learn ”in context”
through the update of its internal state after a stream of examples
[177]; exemplified in Large Language Models’ ability to adapt ”in con-
text” [178]. While (hyper)parameters meta-learning is the most used
approach, other works directly explore how algorithms in the form of
a graph of modules can be meta-optimized by an outer loop [171].

A special case of meta-learning, meta-reinforcement learning [170],
explores how efficient learning through trial and error can be meta
learned (Fig.8). Examples of this are works studying themeta-learning
of (hyper)parameters of a well-defined inner RL algorithm loop. The
meta-learned parameters range from effective hyperparameters [179],
to reward functions [180], to initial weights of a neural network [181].
Another line of work studies how fast general adaptation can bemeta-
learned through the learning of parameters of a neural network whose
internal dynamics will act similarly to reinforcement learning (in con-
text) [54, 182–185]. More details onmeta-RL can be found in Sec.3.1.2.

In particular, works in meta-reinforcement learning also explore the
necessary conditions for learning (or learning-related capabilities) to
emerge, recognizing the importance of environmental diversity and
complexity, for example studying the impact of the variability of the
environment on learning [186].

In some aspects, Meta-learning can be considered as a ”complexity
driven” approach as instead of engineering the adaptive agents (or
learning algorithms), meta-learning explores how they can instead be
meta-learned and emerge through optimization. This can potentially
lead to better learning architecture than those designed by humans
[174, 175]. It might also allow never-ending increase in complexity of
the learning architecture as the outer loop can still iteratively improve
it (compared to fixed algorithms). Meta learning is even considered
as a potential pillar toward general intelligence [3].

As we have seen, environmental complexity and dynamics play a cen-
tral role in shaping agents’ adaptation. This is recognized in both
Life Science [66] and in Computer Science [187]. We will now explore
the importance of the reciprocal interaction between environmental
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complexity and agents’ adaptation in the bootstrap of an open-ended
process.

0.3 Reciprocal causation between
environmental complexity and adaptive
mechanisms

Having introduced different levels of adaptation and their interac-
tions in the previous section, we will now explore the reciprocal in-
terplay between agent adaptation and environment dynamics. Each
section will again draw parallels between existing frameworks in life
science (biology, ecology, and cognitive science) and computer sci-
ence (artificial life and artificial intelligence).

0.3.1 Environmental complexity as a main driver of
adaptations

As seen above, how agents adapt at multiple scales is shaped by the
structure of their interaction with the environment. This is especially
clear in natural evolution where selection is seen as a direct con-
sequence of the environmental pressures and opportunities on the
populations. For example, warmer environments induce a pressure
on plants that might favor heat resistant capabilities such as storing
water [188, 189], or an environment with tall trees might favor taller
animals in order to attain the leaves. Comparably, in development
and culture, the direct environment is also known to be critical to the
”developmental” path an individual takes whether it is through gene
activation that depends on the environment, developmental learning
of specialized skills or knowledge, or through being taught by social
peers.

In particular, the field of human behavioral ecology (HBE) explores
the ecological drivers for certain traits of humans including the emer-
gence of agriculture or the increase in brain capacity [190–192]. For ex-
ample, some works hypothesize the important role of environmental
variability and instability on human evolution [190, 193], potentially
responsible for the evolution of human general capabilities.

In AI and especially the field of reinforcement learning, the environ-
ment is known to be critical to the agents’ final capabilities as the
agent will learn based on its interaction with it. In particular, environ-
ments with more complex dynamics might require a higher level of
cognition to be solved, like some form of reasoning or even special-
ized skills such as learning to read [194].

As well as the environment complexity, the overall distribution of
tasks an agent is trained on has been shown to be critical. It has
been shown that training on a wide diversity of environments (ideally
open-ended) can lead to general skills [44, 45, 195, 196]. In particular,
to cope with variable environments, the agent’s training might meta-
learn a fast learning adaptation mechanism, allowing the agent to
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Figure 10: Artificial life ecosystems with evolution-
ary processes. (Top) Polyworld figure from [34]. (Bot-
tom) Division block figure from [38]..

explore and adapt during its lifetime to the environment that might
be unknown or new [182–184, 186]. In fact, works have shown that
depending on the variability and complexity of the task, the adapta-
tion might learn either a fast learning mechanism or innate behavior
[186]. In constant environments, innate behavior often suffices and
proves more efficient. However, in environments with moderate vari-
ability, general fast-adapting agents are favored, as they can explore
and quickly learn the dynamics of the current environment—albeit at
the cost of dedicating time to this adaptive process.

In addition to the distribution of environments being important, the
sequence of environments is also crucial for efficient adaptation pro-
cesses. In particular, RL training often uses curriculum learning tech-
niques which start from easier environments and progressively ex-
pose agents to more and more complex environments. This has been
shown to lead to better performance than training randomly on the
distribution of environments [195, 197–199]. In practice, in curricu-
lum learning, the next environments to train on might be selected
according to the current capabilities of the agent, learning progress,
or uncertainty about the task. We refer to [198] for an overview of
curriculum learning.

In Artificial Life (Alife), much of the research focuses on discover-
ing environmental dynamics that foster the emergence of complex-
ity, often through simulated ecosystems incorporating evolutionary
processes [5, 32–38, 42, 91] (Fig.10). Traditionally, these studies have
explored relatively simple foraging environments, where agents de-
velop control strategies to gather regenerating resources. Despite
their simplicity, such environments can still give rise to complex phe-
nomena, such as altruistic behaviors [200], most often due to their
multi-agency nature that we will cover in Sec.0.3.3.

More recently, someworks in Alife investigated environments of greater
complexity, which provide richer opportunities for adaptation and the
emergence of intricate behaviors. These efforts have enabled the
exploration of more complex dynamics and adaptive strategies [50,
201].

The role of environments in RL or Alife can be linked to the idea of
a complexity-driven approach. Instead of hand-engineering certain
cognitive processes, the idea is to train an agent on an interesting
(and potentially diverse set of) environments and expect interesting
capabilities to be learned or emerge. In addition, the environment
variability, used inML works aiming for general skills ormeta-learning,
echoes with the variable environment studied in human behavioral
ecology [190, 193].

0.3.2 Reciprocal causation between environmental
structure and agent’s adaptability

▶ ”Organisms not only adapt to environ-
ments, but in part also construct them
[202]. Hence, many of the sources of nat-
ural selection to which organisms are
exposed exist partly as a consequence
of the niche constructing activities of
past and present generations of organ-
isms.”[203]

▶ ”‘Reciprocal causation’ captures the
idea that developing organisms are not
solely products, but are also causes, of
evolution.” [204]

Not only does the agent adapt to the environment, but the environ-
ment itself also changes according to the agents’ behavior. This in-
fluence from the agent to the environment is called nich construc-
tion[203, 205–207] or ecosystem-engineering [208] and covers sim-
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ple cases such as plants producing oxygen as a byproduct of their
activity, to more complicated niche construction such as agriculture.
These modifications of the environment due to the agents’ actions
might have an impact on the environmental pressures and opportu-
nities, and in particular on the agent’s own fitness. Notably, an agent
might evolve or learn to change the environment for potential ben-
efits, for example stabilizing and increasing its food supply through
agriculture or building nests for protection. However, niche construc-
tion can also be detrimental, for example with agents dumping their
detritus in their environment or overconsuming their own resources
leading to their depletion.

Such agent-induced changes in the environment might impact the
agent itself or even its offspring as the environment will also be passed
to the next generation (in addition to the genes) through ecological
inheritance [203] (Fig.11). In addition, ecosystem engineering might
have an impact on other agents that share the environment. For ex-
ample, cyanobacteria produced oxygen that changed the ecosystem’
opportunities and pressures and may have led to the evolution of
complex, bigger multicellular life forms [210].

▶ Niche construction: ”informed activities
of organisms that influence the environ-
ment and affect the fitness of the popu-
lation.” [211]

▶ Ecological inheritance: ”the persistence
of environmental modifications by a
species over multiple generations to in-
fluence the evolution of that or other
species.” [211]

Niche construction has been for a long time disregarded as a minor
mechanism driving evolution but recently regained attention view-
ing it as an important evolutionary mechanism, even termed ”the
neglected process in evolution” [203]. In particular, thinking about
evolution in a broader sense taking into account niche construction
is developed in the Extended evolutionary synthesis (EES) [204]. EES
extends classical evolutionary theory which often only takes into ac-
count a one-way causal effect from environment to agent evolution.
Notably, EES emphasizes the importance of the developmental tra-
jectory of agents in natural evolution. In particular, it emphasizes
the fact that agent development – from gene expression depending
on environmental context, to complex developmental learning and
ecosystem engineering – will affect its selection as well as its envi-
ronment (Fig.12).

As niche construction leads to new pressures and opportunities from
the environment, it can therefore potentially lead to new adaptations
from the agents, which in turn might also again modify the environ-
ment, resulting in novel selective pressures. This reciprocal causa-
tion between agent and environment can lead to an interesting feed-
back loop effect, where agent adaptation is shaped by the environ-
ment but the potentially resulting new behavior might as well change
the environment again. These eco-evolutionary dynamics can po-
tentially lead to never-ending complexity by constantly setting new
problems and opportunities, and in this way be a central driver of
open-endedness in the living world.

In AI however, methods such as RL or evolutionary algorithms often
typically rely on an episodic training paradigm, where the environ-
ment is regularly reset to an initial configuration (when the task is
solved or after a predefined time). This allows training on a stable
specific version of the environment but, in turn, breaks the poten-
tially reciprocal causation between the environment and agents (as
potential changes are reset). Few exceptions exist advocating for non-
episodic training, where the environment isn’t reset [212].

https://extendedevolutionarysynthesis.com/about-the-ees/
https://extendedevolutionarysynthesis.com/about-the-ees/
https://extendedevolutionarysynthesis.com/about-the-ees/
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Curriculum learning in machine learning, where the next environment
is chosen (or procedurally generated) according to the agent’s current
capabilities, can also lead to ”co-evolution” of agents and environ-
ments [195, 197–199, 213]– as the agent’s adaptation will drive the ”en-
vironmental trajectory” and, reciprocally, the ”environment trajectory”
will drive the agent’s adaptation. To some extent, this mechanism can
be partly compared to the eco-evolutionary dynamics.

In Alife, works on artificial ecosystems often do not reset the environ-
ment and let it evolve for an extended period of time [6, 71, 72, 85–
87]. However, environments used in Alife are often very simple, which
might not allow the feedback loop effects to have strong visible dy-
namics. In fact, feedback loop effects between agents’ adaptation
and their environment can create unstable dynamics, potentially re-
sulting in population collapse—for instance, when agents deplete all
available resources. This may explain the tendency to simplify or omit
such feedback mechanisms.

0.3.3 Multi agency as a driver of open-endedness

In the case of multi-agent systems, one cause of environment vari-
ability is the adaptation of other agents (as from a single-agent per-
spective, other agents also constitute the environment). Multi-agency
is in fact a potential cause of ”continual problem generation,” where
each agent might have to continuously re-adapt to the changing be-
havior of others, changing again the behavior of agents, ultimately
leading to feedback loop effects. These co-adaptations can lead to a
continual increase in complexity of the system for example through
arm race like dynamic where agents continuously improve to beat (or
adapt to) the others. In fact, even environments that are very sim-
ple in their single-agent version can lead to very complex behavior
when multiple agents are involved. To illustrate this, Leibo et al [214]
take the example of the game of Go, which consists of ”capturing”
the biggest territory on a grid by surrounding areas with rocks. With
a single player, this would trivially consist of placing the stone on
the edge of the grid. However, when played by two adversarial play-
ers this leads to very complex strategies that have been continuously
improved over thousands of years.

These dynamics of agents co-adaptation have been observed in natu-
ral evolution as well, for example with coevolution of different species
where adaptation of one can lead to new pressure for the other [215,
216]. This need for continual adaptation as a response to other species’
adaptation has been theorized in the red queen hypothesis [217]. Ex-
amples of such dynamics can be seen in predator-prey systems such
as gazelle and cheetah which coevolve to be faster than the other, ex-
emplifying arms race [215], or even plants evolving defenses that are
countered over and over by herbivores [218–220], or parasite-host re-
lationships [221]. The co-adaptation of individuals can also be seen
in the same species through development and culture, for example
with literal arms race between groups of individuals in humans.

In simulation, several studies have shown arm race like dynamics as
a driver of continual increase in complexity. For example, some RL
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Figure 13: Interplay between agent adaptation, en-
vironmental complexity and multi agent dynamics
through feedback loop effects in the Origins frame-
work [230]

works show a continual increase in strategies’ complexity emerging
from adversarial play where opposing teams of adaptive agents con-
stantly learn strategies and counter-strategies to beat the other team
[115], notably with the example of emergent tool use in a simple hide
and seek scenario [39]. Other RL works also use arm race like dynam-
ics through self-play [222] – training agents against themselves (or a
previous version of themselves) in a multi-agent scenario – allowing
to reach superhuman performances in games such as chess, go, or
video games, etc. [109, 113, 114, 223, 224].

In a more asymmetrical relationship between agents, several works
in AI consider the co-adaptation between a problem setting agent
and a problem solver agent to achieve an increase in complexity [48,
49, 65, 195]. This also includes works on generative adversarial net-
works (GAN) [225] which also use this dynamic of arms race by using
two agents in competition, having a generator agent generating ”fake”
data, which the discriminator agent has to discriminate against true
data, with the ultimate goal of training a generator agent able to gen-
erate data that is hard to discriminate from true data.

Alife works often consider multi-agent interactions as an important
driver of emergent complexity, where shifts in equilibrium are due
to other agents’ adaptations. This includes works displaying multi-
species simulations effectively reproducing some aspects of natural
evolution [5, 32–38, 42, 91] including arm race dynamics [226]. This
also includes works where macro-individuals (or dynamics) emerge
from the self-organization of several simple atomic constituents which
strongly influence each other [7, 75, 227].

In addition to competition, multi-agency can also lead to an emer-
gent increase in complexity through cooperation of groups of individ-
uals with division of labor, better exploration as well as information
sharing and culture. Examples in natural evolution are mutualistic co-
evolution, where each species benefits from the coevolution, such as
flowers-pollinators coevolution with plants evolving to attract polli-
nators and pollinators evolving to find the plant, eat the nectar and
transport the pollen [228, 229] .

0.3.4 Conclusion

In this section, we’ve explored the importance of environment in
shaping the adaptation of an agent. We’ve further explored this inter-
action showing that it is in fact a two-way interaction where agents
adapt to the environment but also where environment is changed
due to agent activities. This interplay between agent and environ-
ment adaptation, leading to feedback loop effect, is in fact a great
candidate for implementing systems with continual increases in com-
plexity. In addition, we presented howmulti-agent dynamics, through
the interactions between different co-adaptive agents, can also lead
to feedback loop effects with increases in complexity, for example,
through competition and arms races.
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So far, we have seen that the interplay between agent adaptation
and environmental dynamics offers a promising foundation for con-
structing systems with open-ended dynamics. In this thesis, we inves-
tigate, through in silico experimentation at various levels of abstrac-
tion, how interactions between complex environments and adaptive
entities can drive emergent complexity.

We adopt a bottom-up approach, wherein each contribution isolates
certain mechanisms that we believe are key drivers of emergent com-
plexity within a system. By focusing on isolated specific assumptions
and initial states conducive to emergent complexity, we aim to elu-
cidate these mechanisms, ensuring the analysis is stable, controlled,
and comprehensible.

The thesis follows a progressive structure where the emergent be-
haviors derived in earlier chapters form the basis (or initial state) for
subsequent investigations. In the final discussion (Chap.5), we syn-
thesize these findings and the links between them and try to outline
a potential framework for open-ended simulations capable of foster-
ing general agents.

This progression is depicted in Fig.14 and summarized below:

In chapter 1 , we consider a lifeless environment, in an initial state
where there is literally no body (and thus no sensing, no acting, no
agent, no evolution). Our objective is to study how some parts of such
a lifeless environment could self-organize structures giving rise to
functional proto-forms of life and bootstrap their evolution. For this
aim, we rely on state-of-the-art continuous cellular automata, using
diversity search algorithms to explore their parameter space in the
search of relevant self-organizing phenomena.

In a first contribution (Fig.14.A), we apply diversity search and curricu-
lum learning algorithms in a continuous cellular automata for the
search of system rules leading to the systematic emergence of self-
organizing structures displaying basic sensorimotor capabilities – i.e.
proto-agents that can react to perturbations of the environment. In-
terestingly, we discover self-organized structures able to seemingly
take decisions at the macro scale only from the collective dynam-
ics of many atomic parts, i.e. without any notion of a central ”brain”,
sensors and actuators. In addition, these self-organized agents show
impressive generalization capabilities to conditions not seen during
the search.

Our second contribution (Fig.14.B) delves into the self-organization of
evolutionary dynamics within a similar lifeless environment. In partic-
ular, we extend the continuous cellular automata used in the previous
contribution, allowing us to introduce ”multi-species” simulations –
where self-organizing structures governed by different update rules
can coexist. In these multi-species simulations, we observe evolu-
tionary dynamics occurring due to the physics of the system with-
out any external evolutionary algorithm. In particular, we observe an
emerging evolutionary activity resulting from the cooperative or com-
petitive interactions between diverse self-organizing ”species”, here
again only from the collective dynamics of many atomic parts.
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Chapter 1 thus demonstrates the emergence of individuality, basic
cognition (in the form of sensorimotor capabilities) and evolution in
an originally lifeless environment through interactions among simple
atomic elements. This ultimately results in environments with adap-
tive agents, well separated from the environment, which proliferate
and die through interactions with neighboring entities. In the rest of
the thesis, we then consider a more standard dichotomy between an
environment and agents interacting with it, pre-equipped with sen-
sors, actuators, and decision-making abilities.

In chapter 2 , we study the interplay between agent adaptation and
environment dynamics with embodied agents well separated from
the environment. More precisely, we explore emergent eco-evolutionary
dynamics and niche construction phenomena, asking: How popula-
tions of adaptive agents niche construct their own environment in
the presence of eco-evolutionary feedbacks ? . We focus on two
other contributions.

The first one (Fig.14.C) presents a system where agents continuously
evolve without any environment or population reset, enabling eco-
evolutionary feedback. The environment is a large grid world with
complex spatiotemporal resource generation, containingmany agents
that are each controlled by an evolvable recurrent neural network
and locally reproduce based on their internal physiology. We show
that neuroevolution can operate in an ecologically valid non-episodic
multi-agent setting, finding sustainable collective foraging strategies
in the presence of a complex interplay between ecological and evo-
lutionary dynamics.

The second contribution (Fig.14.D) investigates the emergence of agri-
cultural practices within a population of reinforcement learning agents.
Situated in an environment with different resources that are in com-
petition with each other, these agents learn to eco-engineer their sur-
roundings to promote the proliferation of beneficial resources. This
convergence toward collective niche construction strategies under-
scores the agents’ ability to modify their environment to their advan-
tage.

Chapter 2 therefore introduces niche construction and eco-evolutionary
feedback. In particular, this complex interplay between adapting agents
and the environment can lead to environments with fast variations
that the agents have to deal with. We will further explore in chapter
3 the impact of this variation on agents’ adaptation.

In chapter 3 , we control the environmental variability and study
How advanced, generic, collective and potentially open ended ex-
ploration strategies can emerge in adaptive agents exposed to high
environmental variability? .

Our first contribution (Fig.14.E) leverages procedurally generated hi-
erarchical tasks to study the emergence of collective exploration in
a group of independent agents. From the training on a diverse dis-
tribution of tasks where the underlying rules have to be discovered,
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2: all of our publications are accompanied with
open-source code to reproduce the results and
analysis

agents meta-learn to collectively explore the affordances of the en-
vironment. The agents also show interesting generalization to new
tasks and longer chains of tasks (with more objects, etc.) not seen
during training.

In the second contribution (Fig.14.F), we shift to groups of indepen-
dent agents with a predefined autotelic exploration mechanism and
study the emergence of shared intentionality to cope with variabil-
ity induced by other exploring agents. In particular, from indepen-
dent rewardmaximization, the agents learn to communicate and align
their goals, ultimately achieving more effective learning compared to
agents independently sampling their goals.

This third and last contribution chapter demonstrates how collective
exploration and shared intentionality can emerge as effective mecha-
nisms for coping with highly variable environments, particularly when
agents need to coordinate their learning and discovery processes.

0.4.1 List of contributions

The work presented in this thesis is based on the following publica-
tions as well as accompanying codebases 2 and other materials. Stars
next to author names indicate co-first authors.
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How did the first individuals emerge from a lifeless environment of
purematter? And how did these primordial entities bootstrap the pro-
cess of open-ended evolution? While evolutionary theory provides
powerful frameworks for studying ongoing evolution, the question of
its very origins—the transition from non-life to life—remains one of
science’s most fascinating challenges.

In this chapter, we explore how basic cognitive agents and evolution-
ary processes might emerge from the simplest of starting conditions:
an environment with no notion of individual, containing only matter
and fundamental physical rules. Our investigation focuses on self-
organization—the spontaneous emergence of macroscopic structures
whose properties transcend those of their microscopic components.
Just as water molecules can self-organize into intricate snowflakes
or stars into spiral galaxies, we seek to understand how matter might
self-organize into the first proto-living individuals with self-maintenance
and basic ”cognition”. Ultimately, we aim to unravel how these self-
organizing systems could initiate an evolutionary process with muta-
tion and selection.

Our approach is grounded in the enactivist framework [81, 82] (Fig.1.1),
which considers that every part of the body of an organism partic-
ipates in cognitive processes and that the individual must come to
existence from the self-organization of its parts. This stands in con-
trast to the mechanistic framework (Fig.1.2), which already assumes
the pre-existence of a body and a central ”brain” well separated from
the environment, interacting with it through predefined sensors and
actuators. The mechanistic view, which is largely dominant in AI, al-
ready presupposes an agent embodiment and rather focuses on un-
derstanding how higher-level cognitive interactions can arise. In the
enactive view, “the question of the bodily constitution is conceptually
prior to any particular functional account of a cognitive subsystem”.

To investigate these questions empirically, we employ cellular au-
tomata as our environment testbed following a long list of works
using it to study self-organization of basic cognition, minimal crite-
rion for life, artificial life, autopoiesis [77–80]. Cellular automata are
in their classic form, grid of ”cells”, which are sequentially updated
through a local rule, local in the sense that only the neighbouring
cells are taken into account to compute the update. Cellular au-
tomata are complex system where simple local rules can often lead
to very complex self-organizing patterns and interactions [233] like
the game of Life. See Sec.1.1.1 for more details on celluar automata.

In our investigation, we utilize Lenia, a parametrized class of continu-
ous cellular automata where each parameter set defines a distinct set
of rules —including, for specific parameters, the well-known Game of
Life. Lenia has demonstrated remarkable capacity for generating di-
verse, life-like patterns [8, 9], making it an ideal framework for study-
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Figure 1.2: Mechanistic framework

ing the self-organization of individuals with basic cognitive capabili-
ties. More details on Lenia is given in section.1.1.2.

In the first section, we explore the emergence of basic cognition in
the form of sensorimotor capabilities—specifically, how organized re-
sponses to environmental perturbations can arise. Using advanced AI
techniques such as diversity search [167, 168, 234, 235], we explore the
vast space of Lenia parameters in the search of self-organizing pat-
terns resembling proto-individuals capable of coherent sensorimotor
capabilities (Fig.1.3). Remarkably, the behavior is observed at the level
of themacro individual in a coherent manner without the existence of
a central brain but only from the coherent self-organization of thou-
sands of simple parts. Moreover, these systems display impressive
generalization capabilities, responding robustly to novel environmen-
tal conditions not encountered during the parameter search.

In the second section, we explore the question of the self-organization
of open-ended evolution. For this we introduce a mass-conservative
extension of Lenia: Flow Lenia. Mass conservation, a fundamental
constraint of biological systems [236], is interesting in such simula-
tion as it makes it easier to introduce environmental pressures in
the system (such as a need for resources), as well as lead to more
stable spatially localized patterns. Most importantly, this change of
the system also allows for the introduction of heterogeneous local
rules, where parameter of the update rule are embedded in the sys-
tem dynamic, allowing for different ”species” to coexist in the same
simulation. ”Multi-species” simulations from the competition for mat-
ter lead to selective pressure akin to evolution, just from the physic
of the system (Fig.1.4). The emergence of ”evolution” in this ”only
environment” scenario also shows the complex environment varia-
tion that can arise from interaction between self-organized individu-
als and the rest of the environment.
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the back
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Structure

deformation
Change of direction as a response:
"collective decision" of all the cells

Time

Lenia structure self-organizing from the rule trained for obstacle resistance

Figure 1.3: Robust moving structure emerging
from the rules of the environment that are
discovered by our method in the first contri-
bution Sec.1.2. Blogpost with demo and videos
https://developmentalsystems.org/
sensorimotor-lenia/

Different local parameters
lead to different morphologies

Competition between
"species" for mass
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Figure 1.4: Interactions between patterns in a multi species simulation in Flow Lenia. Video at https://sites.google.com/view/
flowlenia/ and at this link

https://developmentalsystems.org/sensorimotor-lenia/
https://developmentalsystems.org/sensorimotor-lenia/
https://sites.google.com/view/flowlenia/
https://sites.google.com/view/flowlenia/
https://www.youtube.com/watch?v=bAJIETmC-6o
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Figure 1.5: Conway’s Game of Life cellular au-
tomata[68]. Each cell is updated based on its neigh-
bourood. The self-organization of a collective of
simple cells can enable the emergence of localized
macro structures, such as the ”blinker”, and some-
times mobile ones like the ”glider.”

Figure 1.6: Example of Lenia patterns from [9].
Video at https://www.youtube.com/watch?
v=HT49wpyux-k

1.1 Cellular automata and Lenia

In this section, we present the cellular automata framework (Sec.1.1.1)
as well as the Lenia cellular automaton [8, 9] (Sec.1.1.2) that will be
used in the rest of this chapter.

1.1.1 Cellular automata

Cellular automata (CA) are, in their classic form, a grid of “cells” 𝐴 =
{𝑎𝑥 } that evolve through time 𝐴𝑡=1 ⟶ ... ⟶ 𝐴𝑡=𝑇 via the same local
“physics-like” laws. More precisely, the cells sequentially update their
state based on the states of their neighbours: 𝑎𝑡+1𝑥 = 𝑓 (𝒩 (𝑎𝑡𝑥 )), where
𝑥 ∈ 𝒳 is the position of the cell on the grid, 𝑎𝑥 is the state of the cell,
and 𝒩 (𝑎𝑡𝑥 ) is the neighbourhood of the cell (including itself). The
dynamic of the CA is thus entirely defined by the initialization 𝐴𝑡=1
(initial state of the cells in the grid) and the update rule 𝑓 (how a cell
updates based on its neighbours). But predicting the system long
term behavior is a difficult challenge, even for simple rules, due to
their potential chaotic dynamics [233].

Cellular automata (CA), notably Conway’s Game of Life (GoL) [68] (Fig.1.5),
have attracted a lot of interest from the artificial life (ALife) commu-
nity because of the emergence of life-reminiscent spatially-localized
patterns (SLPs). These patterns are of special interest as instances of
autopoietic structures (i.e self-produced and self-maintained struc-
tures) [77], a fundamental property of life and cognition as proposed
in Maturana and Varela theory [67].

1.1.2 Lenia cellular automaton

Lenia [8, 9] is a class of continuous cellular automata where each
CA instance is defined by a set of parameters 𝜃 that conditions the
CA rule 𝑓𝜃 . Once the parameters 𝜃 conditioning the update rule have
been chosen, the system is a classical CA where the initial grid pattern
𝐴𝑡=1 is iteratively updated. Previous works in Lenia have shown that
there exist local update rules 𝑓 , that can lead to the self-organization
of long-term stable complex patterns that display interesting diverse
life-like behaviors [8, 9, 235], as shown in Figure.1.6.

In the multi-channel version of Lenia [9], the system is composed of
several communicating grids which we call channels. Intuitively, we
can see channels as the domain of existence of a certain type of cell.
Each type of cell has its own physics : it has its own way to interact
with other cells of its type (intra-channel influence) and also its own
way to interact with cells of other types (cross-channel influence).

The update of a cell 𝑎𝑥,𝑐 at position 𝑥 in channel 𝑐 can be decomposed
in three steps, illustrated in Figure.1.7 (and animated in https://
developmentalsystems.org/sensorimotor-lenia/#lenia).
First, the cell senses its neighbourhood in some channels (its neigh-
bourhood in its channel, with cells of the same type but also in other
channels with other types of cells) through convolution kernels which

https://www.youtube.com/watch?v=HT49wpyux-k
https://www.youtube.com/watch?v=HT49wpyux-k
https://developmentalsystems.org/sensorimotor-lenia/#lenia
https://developmentalsystems.org/sensorimotor-lenia/#lenia
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Figure 1.7: Detailed view of a step in Lenia (multi-channel). 1) A convolution with the kernels followed by 2) a growth function is applied on
each channel, resulting in a growth update which is 3) added to the current state. Both the convolution kernels and the non- linear growth
function in the learnable channel are parameterized

are filters 𝐾𝑘 of different shapes and sizes. Second, the cell converts
this sensing into an update (whether positive or negative growth or
neutral) through growth functions 𝐺𝑘 associated with the kernels. Fi-
nally, the cell modifies its state by summing the scalars obtained af-
ter the growth functions and adding it to its current state. After the
update of every rule has been applied, the state is clipped between
0 and 1. Each (kernel,growth function) couple is associated to the
source channel 𝑐𝑠 it senses, and to the target channel 𝑐𝑡 it updates. A
couple (kernel, growth function) characterizes a rule on how a type
of cell 𝑐𝑡 reacts to its neighbourhood of cells of type 𝑐𝑠 . Note that 𝑐𝑠
and 𝑐𝑡 could be the same, which corresponds to interaction of cells of
the same type (intra-channel influence). Note also that we can have
several rules, i.e. several (kernel,growth function) couples, character-
izing the interaction between 𝑐𝑠 and 𝑐𝑡 . We refer to section 1.3.2 for a
more detailed description of the update rule with formulas.
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1.2 Discovering Sensorimotor Agency in Cellular Automata using
Diversity Search

Context

This contribution results from a collaboration with Bert Chan (google deepmind Tokyo) in 2021-2022.
It has been submitted to Science Advances (and is currently under review):

▶ Hamon⋆, G., Etcheverry⋆, M., Chan, B. W. C., Moulin-Frier, C., Oudeyer, P. Y. (2024). Discovering
Sensorimotor Agency in Cellular Automata using Diversity Search. arXiv preprint arXiv:2402.10236.
Paper, Code

I am co-first author of this article.

A blogpost associated with the publication, with videos and interactive demo, is also available at
https://developmentalsystems.org/sensorimotor-lenia/.

▶ Hamon⋆, G., Etcheverry, M., Chan, B. W. C., Moulin-Frier, C., Oudeyer, P. Y. (2022). Learning sen-
sorimotor agency in cellular automata. Blogtpost link.

We strongly encourage to take a look at the blogpost to get a better view of the dynamic of the system
with videos.

Note that, as this contribution was submitted to an interdisciplinary journal, its structure is modified
with the material and methods at the end of it Sec.1.2.4.

Abstract
The field of Artificial Life studies how life-like phenomena such as agency and self-regulation can
self-organize in computer simulations. In cellular automata (CA), a key open-question is whether it
is possible to find environment rules that self-organize robust “individuals” from an initial state with
no prior existence of things like “bodies”, “brain”, “perception” or “action”. Here, we leverage recent
advances in machine learning, combining algorithms for diversity search, curriculum learning and
gradient descent, to automate the search of such “individuals”. We show that this approach enables
us to systematically find environmental conditions in CA leading to self-organization of basic forms
of agency, i.e. localized structures that move around and react in a coherent and highly robust
manner to external obstacles, maintain their integrity, and have strong capabilities to generalize
to new environments. We discuss how this approach opens new perspectives in AI and synthetic
bioengineering.

https://arxiv.org/abs/2402.10236
https://github.com/flowersteam/sensorimotor-lenia-search
https://developmentalsystems.org/sensorimotor-lenia/
https://developmentalsystems.org/sensorimotor-lenia/
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1: individuality: ability of a self-organizing structure
(subpart of the environment) to preserve and prop-
agate some spatiotemporal unity [237], making it
a distinguishable coherent entity in the domain in
which it exists
2: self-maintenance: ability of a self-organizing
structure to modify its interactions with the rest of
the environment for maintaining its integrity
3: Autopoietic system: Introduced by Maturana and
Varela [67], the concept of autopoiesis refers to a
system capable of producing and maintaining itself
by creating its own parts
4: Organic individuation: regulation at the
metabolic, transcriptional and morphological level
to maintain organic integrity [238]
5: active engagement in loops of actions and per-
ceptions in the external environment [238]
6: active engagement in communicative in-
teractions and structural coupling with other
agents [238]

1.2.1 Introduction

Understanding how life, cognition and natural agency emerged has
been a central debate across many sectors of life sciences. Biologi-
cal organisms are made of collections of cells that follow low-level
distributed rules and yet they constitute a coherent unitary whole,
displaying strong individuality1 and self-maintenance2 in their envi-
ronment, what was described to be an autopoietic system3. While a
central concept in theoretical biology, the characterization of an au-
topoietic system and the understanding of the processes underlying
its self-organization remain a live issue. Further demystifying how
those processes do not just give rise to organic individuation4 but
also to sensorimotor5 and even intersubjective6 agency, is at the cen-
ter of the debate [238]. In fact, recent advances in biology and basal
cognition suggest that many autopoietic systems that we find in na-
ture, including plants and brainless animals, are robust sensorimotor
agents capable of using a body for sensing opportunities, computing
decisions and acting in their environment [239]. The pragmatic and
complementary question to the debate, central in artificial life (ALife)
and artificial intelligence (AI) research, is: can we engineer the neces-
sary ingredients leading to the emergence of functional forms of life
and sensorimotor agency in an artificial substrata in which initially
there is literally no body (and thus no sensing, no acting, no agent)?
Although there is already a large body of work that proposes to study
the emergence of life and cognition in agents-as-they-could-be, it is
generally done either by jumping over the biological processes that
enable organisms to survive (the mechanistic view, as in e.g. rein-
forcement learning, which considers a pre-existing agent with pre-
defined sensors and actuators) or inconclusive so-far in showcasing
higher-level forms of sensorimotor agency (the enactivist view, as in
e.g. artificial chemistry which studies how some form of agency can
emerge from low-level chemical reactions). Herein, after giving some
background on the mechanistic and enactivist views on cognition and
on their respective limitations, we suggest that modern tools from
machine learning (ML) can help us bridge the gap between those
two views. Whereas those tools have mainly been deployed within
the mechanistic framework, we show that they can efficiently assist
the discovery of environments that self-organize relatively-advanced
forms of sensorimotor agency whose existence and understanding is
fundamental within the enactivist framework for supporting theories
about the origins of life and cognition.

In the mechanistic view, one assumes the existence of agents that
have well defined physical body and information processing brain
allowing them to interact with the rest of the environment through
predefined sensors and actuators. Robots for instance are referred
as embodied agents: their individuality is clear, as they can easily
be distinguished from the rest of the environment, and their self-
maintenance is often not a problem, as their body does not change
over time except for rare cases of real world or artificially-induced
degradation. Hence it is not questioned what makes an agent an
agent or even what makes a body a body [238]. Rather, a more cen-
tral question is to understand how higher-level cognitive processes
and sensorimotor adaptivity can arise in the agent through its inter-
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QUESTION:  How to self-organize sensorimotor agent =  precarious self-constitution + self-maintenance of individuality + behavioral functionality ?
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Figure 1.8: Overview of the scientific question. (A) The enactivist framework: (𝑡𝑖0 ) In the beginning there is only an environment made of
low-level elements (cells) and physical laws (local rules). There is no prior notion of agency, no body, no sensor. (𝑡𝑖1 ) Agents can come to
existence through the coordination of the low-level elements (self-constitution of individuality). (𝑡𝑖2 ) To maintain their integrity, agents must
sense and react to perturbations using only local update rules (self-maintenance of individuality). (B) In cellular automata models like the
Game of Life and a more complex continuous extension called Lenia, it was shown that it is possible to self-organize so-called gliders i.e.
spatially-localized patterns with directional movement. Directional movement (white arrows) and timesteps are displayed. (Question) In this
work, following the enactivist modeling framework, we try to answer the following scientific question: is it possible to find environments in
which a subpart could self-organize and be called a “sensorimotor agent”? This would require the existence and emergence of gliders-like
structures that not only self-constitute and show motility, but that are also robust to external perturbations and hence must develop some
form of sensorimotor apparatus enabling them to make “decision” and “sense” at the macro scale through local interactions only.

7: Curriculum learning: family of mechanisms that
adapt the distribution of training environments to
the learner capabilities [198]

8: the idea that bodies are constantly subjected to
disruptions and breakdowns [238]

actions with the environment. A common methodology is the gen-
eration of a distribution of environments (tasks and rewards) and
the use of learning approaches, such as deep reinforcement learn-
ing, to train the agent’s brain to master and generalize those tasks.
Within that framework, it was shown that it is possible to engineer
agents capable of repertoires of advanced sensorimotor skills such
as precise locomotion [197], object manipulation [117], tool use [39]
and even capable of adapting the learned behaviors to unseen envi-
ronmental conditions [44]. Interestingly, they show that the use of
curriculum learning7 is crucial to generate generally capable agents.
However, the clear body/brain/environment distinction of the mech-
anistic framework bears little resemblance with the way information
seems to be processed by biological systems. Notably it goes against
the concept of morphological computation [240], which argues that
all physical processes of the body, not only electrical circuitry in the
brain but also morphological growth and body reconfiguration, are
integral parts of cognition and can achieve advanced forms of com-
putation.

The enactive view on embodiment however is rooted in the bottom-
up organizational principles of living organisms in the biological world.
Themodeling framework typically uses tools fromdynamical and com-
plex systems theory where an artificial system (the environment) is
made of low-level elements of matter (called atoms, molecules or
cells) described by their inner states (e.g. energy level) and locally
interacting via physics-like rules (flow of matter and energy within
the elements) (Fig.1.8-A-𝑡𝑖0 ). There is no predefined notion of agent
embodiment, instead it is considered that the body of the agent must
come to existence through the coordination of the low-level elements
(Fig.1.8-A-𝑡𝑖1 ) and must operate under environmental perturbations
and precarious conditions8 (Fig.1.8-A-𝑡𝑖2 ). Hence, the self-constitution
and self-maintenance of individuality are prior conditions for any
agency to emerge as it determines the agent’s own existence and sur-
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vival [238]. This shifts the problem of “building agents as-they-could-
be” to a problem of engineering second-order emergence [241]: how
to design environments that can give rise to self-constituting agents
that, coupled with the rest of environment, give rise to sensorimo-
tor behaviors? Previous work has shown that the realisation of au-
topoietic entities in computational media is possible [77, 242–244]. For
instance, fully emergent structures showing spatial localization and
movement have been discovered, such as the well-known gliders in
the game of life up to richer life-like patterns in continuous models
of cellular automata (Fig.1.8-B). So far however, two major challenges
remain poorly addressed in the enactivist literature. First, autopoietic
structures have so far mainly been discovered by human eye and as
the result of time-consuming manual search, limiting their discovery
and analysis. While some recent works, based on information theory
tools, have proposed quantitative measures of individuality in order
to facilitate their identification [237, 245], their algorithmic implemen-
tation remains difficult in practice. Second, among the very few works
that proposed a deeper analysis of the robustness capabilities of the
discovered patterns (based on the enumeration of all possible per-
turbations that a structure can receive from its immediate environ-
ment) [78, 244, 246, 247], findings suggest that glider-like structures
typically remain quite fragile to external perturbations such as colli-
sion with other patterns [246].

In this work, we follow the enactivist framework and consider a class
of continuous cellular automata called Lenia [8, 9] as our artificial
“world”. We show that modern tools from machine learning can help
scientists explore the vast space of continuous CA dynamics, enabling
to address the problem of engineering robust second-order emer-
gence. We propose a method based on curriculum learning, diversity
search and gradient descent, enabling to efficiently shape the search
process and to successfully navigate the chaotic outcome landscape
of the high-dimensional Lenia system. In particular, we use a fam-
ily of algorithmic processes called intrinsically-motivated goal explo-
ration processes (IMGEP), an efficient form of diversity search algo-
rithm [248]. While mainly deployed in the fields of developmental
robotics [249] and developmental AI to enable robots explore and
map vast sensorimotor spaces [250, 251], recent works have shown
how IMGEP can also form useful scientific discovery assistants for re-
vealing the range of possible behaviors in unfamiliar systems such
as chemical oil-droplet systems [252], physical non-equilibrium sys-
tems [253] and models of continuous cellular automata systems as
the one considered here [234, 235]. At the difference of these pre-
vious works, we introduce two novel elements within the diversity
search process: the use of gradient descent for local optimization
and the use of stochastic perturbations within a curriculum of in-
creasingly challenging and diverse target properties (hereafter called
goals). With this method, we are able to find environmental rules
leading to the emergence of patterns that self-constitute, self-maintain
and move forward under various obstacle configurations, i.e. autopoi-
etic entities displaying robust forms of sensorimotor agency.

We then propose a battery of quantitative and qualitative tests, all for-
mulated within the continuous CA paradigm, to further assess the ro-
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bustness and generalization capabilities of the discovered self-organized
patterns. Interestingly, the agents also show strong robustness to
several out-of-distribution perturbations ranging from perturbing the
agent structure in various ways not seen during training (including by
a collision with another agent) to changing the scale of the agent. Fur-
thermore, when tested in a multi-entity initialization and despite hav-
ing been trained alone, not only the agents are able to preserve their
individuality but they show forms of coordinated interactions (attrac-
tiveness and reproduction), which could be interpreted as a primitive
form of intersubjective communication [246]. Those results illustrate
the achievable generalization capabilities of artificial self-organizing
agents, with respect to their mechanistic counterpart, opening inter-
esting avenues for AI. At the same time, they provide interesting mod-
els about the way information might be processed by (brainless) bi-
ological agents to ensure robust maintenance of sensorimotor func-
tions despite environmental and body perturbations [254].

1.2.2 Study of sensorimotor agency in continuous CA
models

In this work we use Lenia (Sec.1.1.2), a class of continuous CA which
is a recently-proposed generalization of Conway’s Game of Life [8, 9].
Previous works in Lenia have shown that there exist local update rules
𝑓 , that can lead to the self-organization of long-term stable complex
patterns that display interesting life-like behaviors [8, 9, 235]. Those
include forms of individuality (spatially-localized organisation), loco-
motion (directional movement) and even basic behavioural capabil-
ities (change of direction in response to interaction with other pat-
terns in the grid). However, in previous work, self-maintenance of
those behaviors in discovered spatially-localised patterns were typ-
ically quite fragile to external perturbations (for example collision
with other agents Movie S3), and properties of robustness and gener-
alization were not specifically studied and tested: the possibility to
self-organize robust self-maintaining “agents” was still an open ques-
tion (and this applies to other CAs). Furthermore, these findings have
so far relied on handmade exploration, which can be very hard and
time-consuming as random rules rarely result in the emergence of
localized patterns and even less moving ones (Movie S2).

In this work, we propose to use AI techniques to automate experimen-
tation and the exploration of Lenia, with minimal human intervention.
More particularly, the automated experimentation aims to find local
update rules 𝑓 leading to the self-organization of stable (and if pos-
sible diverse) agents with sensorimotor capabilities. We also provide
tests in order to assess the sensorimotor capabilities of the obtained
patterns.

The Lenia environment

We refer to Sec.1.1.2 for details about the Lenia cellular automaton.

https://developmentalsystems.org/sensorimotor-lenia-companion/#orbium_collision
https://developmentalsystems.org/sensorimotor-lenia-companion/#random_trials
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Figure 1.9: System overview. (top) Illustration of one experimental rollout with automated (i) generation of target goal (green), (ii) generation
of environmental obstacles (blue) and (iii) optimization of learnable parameters toward goal (backpropagation shown in orange). The initial
state is iteratively updated by the parameterized rule, we then compute the goal conditionned loss from the last state of the rollout and
propagate gradient across the steps to the learnable parameters and initialization. (bottom) Detailed view of a step in Lenia with obstacles. A
convolution followed by a growth function is applied on each channel, resulting in a growth update which is added to the current state of the
learnable channel. Both the convolution and the non-linear growth function in the learnable channel are parameterized (see appendix A.11).

In this work, we are interested in finding parameters (𝜃 ,𝐴𝑡=1) leading
to the self organization of moving agents robust to external perturba-
tions from the environment. For this aim, we need to introduce pertur-
bations in the system in a controlled systematic way, both for testing
the robustness and as criteria during the search. However, due to the
dynamical nature of the system, controlled perturbations over several
steps in the CA system are often hard to introduce. To help solve this
issue, we propose to take advantage of the multi channel version of
Lenia (see Sec.1.1.2) and separate the low level elements of the system
in two types: the first “fixed” channel, which is hand-engineered, in-
troduce elements that act as stable controlled obstacles (blue in Fig
2.); the second “learnable” channel, where parameters of the physic
are learned, is where the agent has to emerge (yellow in Fig 2.). In
practice, the environment parameters (𝜃 ,𝐴𝑡=1) are then separated in
two. The first part, denoted (𝜃𝑓 , 𝐴𝑡=1

𝑓 ) is a hand engineered part where
𝜃𝑓 gives the rule on how obstacles block matter from going in, while



1 Low level: emergence of basic cognition and open ended evolution 35

𝐴𝑡=1
𝑓 gives the obstacle placement and shape. Details on how we im-

plement obstacles as part of the CA rule can be found in material
and methods (Sec.1.2.4). The second part however, denoted (𝜃𝑙 , 𝐴𝑡=1

𝑙 ),
is free: the method presented below enables to learn these environ-
ment parameters so that “agents” with sensorimotor capabilities can
self-organize.

What we are searching for is thus learnable parameters (𝜃𝑙 , 𝐴𝑡=1
𝑙 ) that

will induce a physic leading to the self-organization of agents that are
able to move and survive in a grid where obstacles perturb their struc-
ture and therefore may break their integrity. Note that finding pat-
tern with such capabilities is not trivial, for example moving patterns
found by hand in [8, 9] (as the Lenia glider), which are stable without
perturbations, often die from the collision with our engineered obsta-
cles (Movie S4). Note that in our system, if an agent is to emerge, the
only way it can “sense” previously-introduced obstacles is from the
perturbations that the obstacles induce on its structure. Compared
to the physical world, the agent does not “sense” the obstacles by
means of exchange of particles like photons or chemical molecules,
as in vision or chemoreception, but more akin to direct touch as in
haptic perception.

Intrinsically Motivated Goal Exploration Process (IMGEP)

Formally, a set of parameters (𝐴𝑓 , 𝜃𝑓 , 𝐴𝑙 , 𝜃𝑙) in Lenia maps to a certain
sequence of states (trajectory 𝑜). This trajectory can then be mapped
to a vector 𝑅(𝑜), through a defined characterization function 𝑅. This
vector provides a behavioral description of the trajectory, and the im-
age of 𝑅 represents the space of possible behaviors that can emerge
in the system. As we will show below, randomly exploring the space
of learnable parameters (𝐴𝑙 , 𝜃𝑙 ) is both costly in terms of experimen-
tations, and inefficient for finding robust sensorimotor behaviour.

Thus, we propose to leverage an AI technique called Intrinsically Mo-
tivated Goal Exploration Process (IMGEP) [249] to help exploring the
space of behaviours. As this technique was originally developed to
model curiosity-driven exploration in children [255], we call such a
system a curious automated discovery assistant. The IMGEP tech-
nique relies on goal-directed search, which we leverage to drive the
system toward the emergence of diverse target (sensorimotor) be-
haviors, called goals. More precisely, given a goal-sampling strategy
𝐺, IMGEP automatically samples target goals 𝑔 ∼ 𝐺 which are points
in the behavioral space. For each goal 𝑔, the objective is then to opti-
mize toward parameters (𝜃𝑙 , 𝐴𝑙) leading to a sequence of state which
is mapped as closely as possible to this goal. To score the trajectory
according to a goal, a loss function ℒ(𝑔, 𝑜) taking as input the trajec-
tory and the goal is used.

The behavioral descriptor 𝑅 we choose in this contribution is the
position of the center of mass at the last timestep of a simulation.
The behavioral space then consists of all possible (x,y) coordinates
in the grid. The objective for a given goal 𝑔 = (𝑥, 𝑦) is thus to find
parameters (𝐴𝑓 , 𝜃𝑓 ) leading to the emergence of a spatially localized

https://developmentalsystems.org/sensorimotor-lenia-companion/#orbium_obstacles
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pattern attaining the goal position at the last timestep under sev-
eral perturbation by obstacles. In this work, we choose to define the
(goal-conditionned) loss as the mean squared error (MSE) between
the state at the last timestep of the trajectory and a disk centered
at the goal position. In addition to closeness to the goal position,
the loss function we use incentivizes localization of the mass to pre-
vent pattern explosion and collapse, which is a very common outcome
of Lenia parameters. We then use gradient descent to optimize the
learnable parameters (𝜃𝑙 , 𝐴𝑡=1

𝑙 ) by backpropagating the loss through
the steps and make progress toward the goal (Fig 2.).

Gradient descent optimization has already been successfully applied
with cellular automata [256] on learning CA parameters leading to
the growth (and regrowth) of a target pattern [257] or texture [258],
or enabling cellular collectives to perceive their large scale structure
[259], proving the effectiveness of such method (with some additional
component for training for long term stability) in complex chaotic
self-organizing dynamic. However, in this work, we consider moving
agents which are a fragile type of pattern in Lenia as moving forward
in such system means to grow new cells at the front while the ones
at the back die. This equilibrium between growth and death is also
challenged by the random perturbations we introduce in the system.
Thismeans that changes of parameters, because of the chaotic nature
of the system, can easily break the equilibrium between growth and
death of cells making the optimization harder.

To help with this difficult optimization landscape we propose to in-
troduce a curriculum for making small improvements iteratively. Cur-
riculum learning has already been applied for optimizing cellular au-
tomata rule with gradient descent as a solution for getting out of a
trivial local optima in Variengien et al (2021) [53]. The curriculum also
solves technical gradient flowing problem, detailed in appendix 11.

The intuitive idea behind our curriclum is to first learn rules leading
to moving (spatially localized) agents which we train to go further and
further (in the same amount of timesteps, hence faster) and at some
point train them to go further while dealing with obstacles. To do
so, the fixed environment 𝐴𝑡=1

𝑓 we sample for training has a certain
structure: the left half of the grid is free from obstacles while the
right part contains obstacles that will be randomly placed at every
rollout (blue in Fig.1.10-a). The sampling strategy 𝐺 we chose in the
IMGEP also participates in the curriculum as it is biased to randomly
sample goals that are a little bit further than previously attained po-
sitions. More information on the sampling strategy can be found in
appendix 7. Putting target goals in the obstacle area means that dur-
ing training, the potentially emerging agents will have to go to a spe-
cific location while its structure is perturbed by obstacles randomly
placed. The gradient descent optimization will incentivize recovery
from perturbation and to keep moving despite being damaged. In
addition, the fact that the obstacles are randomly placed should in-
centivize generalization to different perturbations.

To sum up, the IMGEP iteratively (and automatically) generates in-
creasingly difficult goals, in increasingly difficult and diverse environ-
ments, for which we will try to find, and optimize using gradient de-
scent, learnable parameters (𝜃𝑙 , 𝐴𝑡=1

𝑙 ) that will lead to the self organi-
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zation of agents achieving these goals. For each goal (position), the
optimization steps are done under several obstacle configurations
{𝐴𝑓 } in order to learn to resist to different perturbations. After each
optimization, we then test the final obtained parameters on several
obstacles configurations {𝐴𝑓 }, that are sampled the same way as in
the training steps, to assess the reached position. We store this (pa-
rameters, reached position) couple in history ℋ in order to be able
to use it as a starting point for subsequent goals. A more detailed
description of the method can be found in material and methods
(Sec.1.2.4).

Evaluation of the discovered patterns

Whereas the notion of agency is closely tied to the ability of an organ-
ism to maintain its own organization despite encountering novel cir-
cumstances, the robustness of current artificial autopoietic systems
is lagging far behind the robustness of their biological counterparts.
We believe that this limitation, together with the difficulty of engi-
neering such autopoietic systems, is a major reason why we have not
assisted yet to a wider adoption of the enactivist framework by the
AI community. The IMGEP search, which is precisely intended to facil-
itate the search of such autopoietic systems, should provide us with
a database of parameters {(𝐴𝑓 , 𝜃𝑓 )} ∈ ℋ that (when successful) lead
to the self-organization of patterns that are robust (at least) to the
different obstacle configurations seen during training.

To go further and characterize agency and the degree of robustness of
the discovered parameters/patterns, we propose an empirical evalua-
tion procedure in two stages. First an “empirical agency filter” is used
on the database of discoveries to discard parameters that do not lead
to the self-organization of what we call “agents” in Lenia. More pre-
cisely, our filter implements several classifiers, inspired from ones
proposed by Reinke et al. [234], to detect whether the emergent mat-
ter does not disintegrate (vanishes or explodes), forms a coherent
entity (single soliton), and does so during a long-enough time win-
dow (longer than training). In addition to the agency filter, we also
introduce a moving filter which tells if an agent is moving (travels
a minimum distance) or not (examples of discovered “agents” that
are considered not moving are shown in Movie S19). Then, to assess
the capabilities of selected agents to withstand perturbation by ob-
stacles we perform a basic obstacle test: testing them on obstacle
configurations similar to the ones seen during training; and various
generalization tests: running them through a battery of tests with
several out-of-distribution perturbations that were not seen during
training. In particular, we test the discovered sensorimotor agents
to harder obstacle configurations, stochastic cell updates, changes
of initialisation and changes of scale that were not experienced dur-
ing training. For each test, given a distribution of perturbations, we
measure robustness as the average performance over sampled per-
turbations, where performance is a binary success metric that deter-
mines whether the agent “survived” the perturbation or not. As for
“survival” metric, we simply apply our agency filter to detect whether
the (perturbed) emergent entity is able to self-maintain despite the

https://developmentalsystems.org/sensorimotor-lenia-companion/#non_moving
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9: a perturbation is said to be destructive if it funda-
mentally disrupts the entity’s organization leading
to its disintegration [78]

10: Source code for reproducing the results can be
found at https://github.com/flowersteam/
sensorimotor-lenia-search.
11: Interactive web demo and additional videos can
be found at http://developmentalsystems.
org/sensorimotor-lenia-companion/

introduced perturbations (i.e. is still an agent at the end of the test).
Note that this metric closely follows the definition of cognitive do-
main of an autopoietic system, which was introduced by Maturana
and Varela [67] and later defined by R. Beer as the percentage of non-
destructive9 perturbations, out of all possible perturbations, that the
autopoietic system can tolerate [78]. Because measuring the cogni-
tive domain as such would require an exhaustive enumeration of all
possible perturbations and all possible valid states that the entity can
take, which is not tractable in the Lenia environment, we instead rely
on a proxy metric and on a set of chosen empirical tests. Finally, in
addition to robustness, we also measure the performance of agents
in term of speed with and without obstacles, especially as speed can
be a measure of performance of motor capabilities (for example for
biological agent to flee predators or chase preys) and as speed with
obstacles is an interesting measure on how well the agent deals with
obstacles. We refer the reader to Material and Methods (Sec.1.2.4) and
to appendix A.1.8 for more details on our evaluation procedure.

In addition, we provide the code10 enabling to reproduce all results,
as well as an interactive web-demo11 where one can replay the discov-
ered agents and test them to all sorts of freely-drawn perturbations
including custom obstacle shapes, addition and/or removal of mass,
interactions with other agents in the grid and control of environmen-
tal cues (attractive elements) in the Lenia grid.

We argue that those quantititative and qualitative tests, which were
all implemented within the continuous CA paradigm, can serve as a
good baseline to evaluate the generalization capabilities (and hence
the degree of agency) of autopoietic systems in enactivist research,
akin to commonly deployed benchmarks in AI for evaluating mecha-
nistic forms of agency [44].

1.2.3 Results

In this subsection, we analyze the discoveries made by the proposed
approach (IMGEP) and compare it with two other exploration base-
lines: a random search, where parameters are sampled uniformly in
the parameter space (same ranges than for the IMGEP, given in ap-
pendix A.1.6); and a handmade search, where we collected the dis-
coveries, made by semi-automatic search and expert selection, pre-
sented in the original Lenia papers [8, 9]. Each IMGEP experiment
outputs 160 parameters but performs in average 11700 Lenia rollouts,
due to stochasticity in the method (see Materials and Methods). For
IMGEP and random search, 10 independent repetitions are performed
(where random search is given the same experimental budget of 11700
rollouts per seed). Note that the comparison with handmade search,
while interesting, is challenging in practice as it is the result of te-
dious search for which the total experimental budget is unknown,
and which was conducted over some Lenia hyper-parameters that
are not all included in the automated search (e.g. various number of
channels or kernels). Moreover, we use a slightly different parame-
terization of the rule to allow for differentiability (details in appendix
A.1.6).

https://github.com/flowersteam/sensorimotor-lenia-search
https://github.com/flowersteam/sensorimotor-lenia-search
http://developmentalsystems.org/sensorimotor-lenia-companion/
http://developmentalsystems.org/sensorimotor-lenia-companion/
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For the three baselines (IMGEP, random search and handmade search),
we filter the obtained parameters to select only the moving agents
(passing the agency and moving test) and measure their speed and
robustness to the basic obstacle test and generalization tests, as de-
scribed in the previous subsection.

Individuality, locomotion and sensorimotor capabilities

As illustrated in Fig.1.10., the IMGEP search enables to evolve agents
along a curriculum which progressively leads to the emergence of
individuality, locomotion and sensorimotor capabilities. At first, the
IMGEP samples goals (i.e. target positions) that are not too far from
initialization (area A in Fig.1.10-a) and enabling to find rules leading
to the self organization of spatially localized patterns which starts
to move a little bit from initialization (as shown in Fig.1.10-b-1). Then,
from these newly learned rules the IMGEP samples further goals (area
B in Fig.1.10-a) which lead to spatially localized patterns that move fur-
ther in the grid in the same amount of time (Fig.1.10-b-2). At this point,
some obtained parameters already lead to the self-organization of
moving agents i.e. passing our empirical agency test andmoving tests
(long-term stable solitons capable of moving while self-maintaining).
Moving agents’ patterns are in fact already not trivial to find through
random search in the parameter space as only 30 moving agents were
found through the 10 seeds of random search out of a total of 117 000
trials of parameters. The speed of the obtained moving agent at this
point is still limited as can be seen in Fig 3-d.

The IMGEP pursues the curriculum, taking advantage of the previously
learned parameters that already result in moving agents, now sam-
pling target goals that are even further away from the initial position,
in the obstacle area C,D in 3.a, leading to moving agents entering the
obstacle area (as shown in Fig.1.10-b-(3,4)). As expected, the parame-
ters resulting from those goals have a higher robustness to obstacles
as can be seen in Fig.1.10-e. We refer to appendix A.1.3 for extra ex-
periments with an ablation of the obstacle area during optimization
showing that the increase of robustness is due to the presence of ob-
stacles in the optimization and not only to the distance of the target
goal position to the initialization.

As expected, we observe that agents trained with further goals move
on average at faster speeds in environments without obstacles (Fig.1.10-
d)

At the end of the curriculum loop, the obtained rules often lead to the
self-organization of moving agents that are able to navigate fast in an
area with obstacles while still maintaining their integrity (Fig.1.10-b-4,
Movie S1). The emerging agents are capable of changing direction and
recovering in response to perturbations induced by the obstacles, i.e.
have sensorimotor capabilities, and this only through the global co-
ordination of those identical low-level parts and in particular without
having any central unit computing decisions.

In total, 9 out of the 10 seeds led to at least one sensorimotor agent,
which we define in this contribution as a moving agent with a mea-
sured robustness ≥ 0.95 in our basic obstacle test. Note, however,

https://developmentalsystems.org/sensorimotor-lenia-companion/#sensorimotor_agents
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that the performance in terms of speed with obstacles varies from
one seed to another (see Appendix Table A.1).

Over the 10 seeds, a great part of the obtained emerging moving
agents are sensorimotor agents. In fact, over 10 seeds, 486 of the
1600 parameters (10 seeds x160 parameters) led to moving agents
according to our empirical agency and moving filter, from which 261
have a robustness to obstacles ≥ 0.95.
As a comparison, out of the 117 000 parameters generated by the 10
seeds of random search, only 30 led to moving agents from which 20
have a robustness to obstacles > 0.95. Our method surpasses ran-
dom search in term of speed with obstacles and robustness of the
obtained agents, as well as the total number of long term stable mov-
ing agents obtained as can be seen in Fig.1.10-c (486 for IMGEP and
30 for random search in total over 10 seeds and with the same Lenia
rollout budget). In fact random search is able to find some agents
(∼ 1% of all its discoveries) but most of them are static compared to
IMGEP whose directed search fosters the emergence of moving agents
(Movie S5).

Our method also results in agents with better robustness and speed
than the ones found in the original Lenia papers [8, 9] (Fig.1.10-c).

Ablation studies of the method can be found in the appendix A.1.3,
showing how curriculum, diversity search and gradient descent are
key ingredients in the method and are an efficient direction to search
for sensorimotor behavior in self-organizing systems. We also pro-
vide the sequence of reached positions of a seed in appendix A.1.2,
displaying the curriculum and showing how diversity search can help
find potential stepping stones.

Generalization

Biological organisms are able to maintain phenotypic stability in the
face of diverse environmental perturbations arising from external stresses,
intracellular noise, and even quite drastic changes during morpho-
genesis such as perturbations to the embryo structure [260] or to the
substrate cellular size [261]. It has long been recognized that robust-
ness is an inherent property of all biological systems that has been
strongly favored by evolution [262]. In this subsection, we are inter-
ested to see if similar robustness capabilities can be achieved by the
artificial self-organizing agents that have been discovered by our ar-
tificial evolution workflow (Fig.1.12 and Fig.1.13). To do so we evaluate
the generalization capabilities, over the proposed battery of tests, of
the 10 best agents discovered by the IMGEP, random and handmade
search variants, as well as on the agents that have a speed within
obstacles greater than one (91, all discovered by IMGEP). “Best” here
is computed according to the speed-robustness criteria presented in
Figure 3-c, i.e. the fastest with obstacle that also have a robustness
in the basic obstacle test> 0.95. The performances are fully reported
and compared in appendix tab.A.2. As we will see, the discovered
agents showcase quite impressive generalization capabilities at the
organic, sensorimotor and inter-subjective levels [238]. We group the

https://developmentalsystems.org/sensorimotor-lenia-companion/#overview_agents
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Figure 1.12: Quantitative tests of generalization of the discovered sensorimotor agents. We conduct a battery of quantitative tests which we
organize in 9 families of parameterized perturbations that test for various (a) obstacle number, size and speed, (b) rate of cell updates, as
well as rate and magnitude of noise added to the updates, but also (c) rate and magnitude of noise added to the initial state and (d) scaling
factors. For each family, we test for 5 different parameter values, i.e. perturbation strength, resulting in a total of 9 × 5 = 45 tests. For each
test, the performance of an agent is computed as the average score of survival over 10 random seeds. A score of 1 (dark blue) means that the
agent survived all 10 tests whereas a score of 0 (light yellow) means that the agent survived none of the tests. The table reports the mean and
standard-deviation performances, over the 10 best agents discovered by our goal-directed curriculum, for all of the 45 tests (one table cell per
test), where “best” is determined by the speed/robustness criteria introduced in Figure 3-c. Below each column, we show snapshots of system
rollout at test time given the newly introduced perturbations. The shown snapshots are all taken from rollouts of the “best” agents, and from
the first seed (out of the 10 tested random seeds). Timesteps are specified under the images, for instance snapshots of the perturbations
applied on the initial state are shown at t=1.

observed generalization capabilities into six categories: harder ob-
stacle configurations (external stresses), stochastic cell updates (per-
cell noise), changes of initialization (“embryo” variation), changes of
scale (compute capacity variation), interactions with other agents in
the grid (inter-agents regulation) as well as with human-controlled
environmental cues (observer-agent regulation).

Harder obstacles. We first tested the agents generalization capabil-
ities to a larger and more challenging set of obstacle configurations.
The test set includes controlled configuration with varying number,
size and speed of obstacles (Fig.1.12-a), as well as human-drawn ob-
stacles such as vertical walls and dead ends (Fig.1.13-a). Interestingly,
whereas some well-placed perturbations can lead to death or explo-
sion, the discovered agents show strong robustness and generaliza-
tion to most of the test set configurations. They showed quasi-perfect
survival to grids with up to 48 obstacles, to grids with small (but
dense) or big (but sparser) obstacles, and to obstacles with moder-
ate speed. High-speed obstacles however, seem to challenge agent’s
survival (Fig.1.12-a), even though the IMGEP-discovered agents are still
much more robust to moving obstacles than the ones discovered by
random and handmade search (appendix Table A.2 and Movie S6).
Those results suggest that, by training for fast-moving and obstacle-
resisting behaviors, our goal-directed curriculum favored the self-organization

https://developmentalsystems.org/sensorimotor-lenia-companion/#moveobs_overview
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of agents that are able to quickly recover from perturbations induced
by the environment, even ones not seen during training. For instance,
qualitative tests also showed that the discovered agents are able to
successfully navigate forward while coming across tightly-packed ob-
stacles, walls of various inclinations, corners, dead ends and even
bullet-like types of obstacles (Movie S10).

Stochastic updates. We then tested the agents generalization capa-
bilities to asynchronous and noisy cell updates. As proposed in Mord-
vinstev et al. [257], relaxing the traditional assumption of synchronous
update in cellular automata (which assumes a global clock) is closer
to what you would expect from a self-organized system, and can be
done by applying a random update mask on each cell (parameter-
ized by the update mask rate in Fig.1.12-b). Despite the update mask
enforcing asynchronous and less (or more) frequent cell updates at
test time, the discovered parameters still give rise to self-organized
agents that perfectly self-maintain (survival scores of one) and that
showcase very similar morphology and behavior as the agents with
synchronous updates (Movie S14). The agents are slowed (or fasten)
a little bit but this is what we can expect as each cell is updated in av-
erage only a fraction of the time (or several times per timestep). We
also relax the assumption of exact update by adding random noise, of
various amount and magnitude, to the cell states during the system
rollout. Here, we observe that the agents can resist quite consequent
quantities of noise but passed a certain level, as expected, the collec-
tive looses its integrity and disintegrates (Fig.1.12-b).

Changes of initialization. While the initialization pattern has been
learned with a lot of degree of freedom (pattern in [0, 1]40×40), we
can look if similar patterns (phenotypes) can self-organize from other
(maybe simpler) initialization patterns. This capacity to converge to
the desired anatomy in spite of a different initialization (“embryo”), is
something that can be found in biological organisms [260], and that
we can expect in our system as well. Indeed, as shown in Fig.1.12-c,
we can see a quasi-perfect robustness to noise-altered initial states,
and this even for quite high amounts of noise (except for few con-
figurations that lead to death). These results suggest that the final
phenotype forms a strong attractor towards which the different ini-
tial mass pattern tend to converge under the learned CA rule. The
learned CA rules are hence prone to encode, grow and maintain a
specific target morphology (and its associated functionality), which
is consistent with the agent ability to recover from obstacle-induced
perturbed morphology. As illustrated in Fig.1.13-b, we also tested for
handmade initial patterns such as bigger disks and same-size asym-
metrical disks (for example with gradient activation). Interestingly the
large disk initialization led to multiple entities forming and separat-
ing from each other. The same-size disk, which is much simpler than
the trained initial states (but preserves some form of asymmetry) also
converged toward the same morphology. However the robustness to
initialization is not perfect as many initializations, such as disk of
smaller size and/or without asymmetry, easily lead to death (Movie
S18).

https://developmentalsystems.org/sensorimotor-lenia-companion/#bullets
https://developmentalsystems.org/sensorimotor-lenia-companion/#asynchro
https://developmentalsystems.org/sensorimotor-lenia-companion/#init_death
https://developmentalsystems.org/sensorimotor-lenia-companion/#init_death
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Figure 1.13: Qualitative tests of generalization of the discovered sensorimotor agents. We conduct a battery of qualitative tests, where we
test the (best) discovered agents to all sorts of difficult perturbations including (a) freely-drawn obstacles such as walls, mazes or dead-
ends (b) freely-drawn initial states such as very big disks (resulting in the emergence of multiple entities) or small disks with gradient
asymmetry, (c-d-e) introduction of other agents in the grid (resulting in the emergence of inter-agent interactions such as individuality
maintenance, attraction and reproduction), (f) the introduction of novel low-level elements that have an “attractive” effect on the agents
(allowing external user to guide the agent trajectory in the grid); and (g) custom mass removal (pixel erasing). Details of the resulting
observed behaviors are provided in the text, with videos available on the companion website https://developmentalsystems.org/
sensorimotor-lenia-companion/.

Changes of scale. Similarly, while the initialization and update pa-
rameters have been learned at a certain spatial resolution during
training resulting in agents of a certain size (in term of number of
cells), we can artificially change the scale at test time by approximate
resizing of parameters (see Appendix subsection A.1.8). As shown in
Fig.1.12-d, we tested for different down-scaling (and up-scaling) fac-
tors that surprisingly resulted for most of them in fully functional
agents with the overall same structure but smaller (or larger) size
in terms of number of cells. For agents which are down-scaled, and
hence have much less pixels/cells to do the computation, it is par-
ticularly surprising that they are still able to sense and react to their
environment and still show relatively-advanced levels of robustness
(Movie S15). This scale reduction has a limit (a scaling of 0.15 already
leads to some death) but we can go quite far down and still obtain
functional phenotypes. For the bigger agents, which therefore have
more space to compute (but also more cells to organize), we observe
similar results where agents still self-organize to functional pheno-
type. Once again, this resonates with findings in biology suggesting
that organisms are able to accommodate cell-size differences by ad-
justing cell number in order to maintain roughly constant body size
and structure [261].

https://developmentalsystems.org/sensorimotor-lenia-companion/
https://developmentalsystems.org/sensorimotor-lenia-companion/
https://developmentalsystems.org/sensorimotor-lenia-companion/#scaling
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Interactions. We were then interested to test how the discovered
agents would react when interacting with other agents in the grid.
Given the set of parameters (𝐴𝑙 , 𝜃𝑙), we can trigger the forming of sev-
eral macro-entities at test time by replicating the initialization square
pattern (𝐴𝑙 ∈ [0, 1]40×40) at different locations within a larger grid
(𝐴𝑡=1 ∈ [0, 1]512×256) and letting the system unroll. Doing so leads to
the development of several entities of the same “specie” (governed by
the same update rule/physic 𝜃𝑙 ). As illustrated in Figure 5, we did that
for several of the discovered sensorimotor agents, and qualitatively
observed several interesting emergent interactions.

The first thing that we observed is that, several of the discovered
agents show strong individuality preservation (Movie S11). The fact
that the individual agents do not merge nor enter in destructive inter-
actions despite being all made from identical cells is an intriguing ex-
ample of how the boundary of a “self” [263] can emerge and maintain
in self-organizing systems. In particular results suggest that, in the
Lenia system, individuality can be obtained as a byproduct of training
an agent alone. Our intuition is that by trying to prevent too much
growth during training, it learned to prevent any living cell that would
make it “too big”, including living cells from other entities here.

A second type of interaction that can be observed with certain pa-
rameters/environments is attraction. As illustrated in movie S13, two
agents placed in the same grid can show attraction when coming
close enough from one another, leading them to stay together and
move in the same direction. Interestingly, when they encounter an
obstacle, they are able to separate briefly and then to reassemble
together. Similarly, even when they stay together, we can still quali-
tatively observe two distinct entities that are interacting with one an-
other while maintaining their overall shape and integrity. This type
of behavior has been studied in the game of life under the concept
of consensual domain [246].

A third type interaction that has been observed in some of the dis-
covered agents is a form of reproduction where collision between
two agents give rise to the birth of a third entity (Movie S12). This
kind of interaction seems to happen when one of the two colliding
entities is in a certain “mode”, like when it just hit a wall. Our intu-
ition is that when it hits a wall, the self-organizing agent produces a
growth response in order to recover. During this growth response if
there is extra additional mass coming from another entity then the
self-organizing agent might split off from the created mass while the
separated mass, from robust self-organization (see “Changes of ini-
tialization” above), grows into a complete individual.

External control. A central challenge in synthetic biology, when faced
with unconventional forms of agency such as collective of cells, is to
find new ways to communicate with the cells to induce desired be-
haviors at the collective level without having to physically “rewire” the
structure of the agent (e.g. via genome editing) but rather by introduc-
ing externally-controlled cues in the environment [264]. Here, we are
interested to see whether we can induce (novel) target behaviors in

https://developmentalsystems.org/sensorimotor-lenia-companion/#individuality
https://developmentalsystems.org/sensorimotor-lenia-companion/#attraction
https://developmentalsystems.org/sensorimotor-lenia-companion/#reproduction
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the discovered agents without having to modify the learned param-
eters 𝜃𝑙 . In particular, we investigate whether the agents can show
attraction to some novel elements in their environment (like in na-
ture organisms being attracted to certain chemicals, lights or temper-
atures) and if we could use those elements to guide the macro-entity.
To do so, we introduce a new type of “attractive” low-level elements
within the Lenia CA paradigm. More precisely, given the set of learned
parameters 𝜃𝑙 , we introduce a novel local rule with parameters 𝜃𝑎 that
determine the physical influence of the attractive elements onto the
agent cells. To find parameters 𝜃𝑎 triggering the desired attraction
effect at the agent behavioral level, a simple random search with au-
tomatic pre-filtering and final human assessment was performed (see
appendix A.1.8 for details on the procedure). Movie S17 is an example
of obtained behavior where we can clearly see that the sensorimo-
tor agent is getting attracted to the newly-introduced environmen-
tal element (disk of cyan particles) which allows the external user to
“control” the agent trajectory by moving the disk in the grid. Interest-
ingly, in spite of this novel behavior, agents are capable to maintain
their normal sensorimotor capabilities showing robustness to colli-
sion with obstacles and other agents in the grid. Besides, once the
attractive element is removed the agents return to their normal be-
havior. However adding extra rules also fragilize equilibrium that ex-
isted in the agent rules as it creates perturbations that the agent has
not been trained to withstand, leading sometimes to death or explo-
sion (or to other behaviors such as reproduction due to extra boost of
growth). Once again parallels can be drawn with findings in biological
organisms, for instance [265] show that controlled UV light beam can
be used to externally guide the trajectory of micro-swimmers to per-
form on-demand drug discovery. While we only tested for attraction-
type of generalization behaviors, we believe that more sophisticated
types of environmental guidance could be induced, though probably
necessitating more advanced search methods.

Morphological computation. This subsection has provided several
empirical evidences of how adaptive high-level functionality can emerge
from a collective of low-level, decentralized elements. In order to
withstand the tested perturbations, the cellular collective first needed
to “sense” the induced perturbations through a deformation of the
macro structure. After this deformation it had to “communicate” the
information and make a collective “decision” on where to grow next.
Then it had to move and regrow its shape, altogether giving rise to the
observed robustness of the macro structure. In order to better visu-
alize the physical manifestation of decision-making within the cellu-
lar collective, we manually suppressed a part of the agent (Fig.1.13-g,
Movie S16). We can clearly observe that perturbation of the macro-
structure is what leads to the direct change of direction. Those results
support the fact that computation of the decision is made at the mor-
phological level hence that morphology, decision-making and motric-
ity are highly entangled phenomena [240].

https://developmentalsystems.org/sensorimotor-lenia-companion/#attraction_external
https://developmentalsystems.org/sensorimotor-lenia-companion/#damage_hand
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1.2.4 Materials and Methods

System. An update in Lenia is given by the different rules compos-
ing the function 𝑓𝜃 , each rule is composed of a convolution kernel
(which will sense the surrounding of the cell) and a growth function
(a function which will convert this sensing, a scalar, into an update
of the mass, another scalar). The update of the cells are then given
by a weighted sum of the update given by each rule. At each step,
the calculation of the update is done identically on every cell of the
grid (every cell apply the same convolution filter and growth func-
tion). This update is then added on the associated cell and the result
is clipped between 0 and 1. See figure 2. for an illustration of the
update. The Lenia system used in this work is slightly different from
the one in the original paper [8, 9]. We changed the parameteriza-
tion in order to allow more gradient to flow through the steps (more
details in appendix A.1.6). We also choose to use 10 rules, from the
learnable channel to itself. We refer to appendix A.1.6 for a detail on
the parameter of the systems and their role. In total the 10 rules are
controlled by 132 parameters.

Modeling of Environmental Constraints. The parameter 𝜃𝑓 gives the
update rule associated with obstacles. This rule senses in the obsta-
cle channel and update in the learnable channel. This means that
the convolution will be calculated upon the obstacle channel and
the growth obtained through the growth function will be added to
the learnable channel. In practice, for 𝜃𝑓 , we use a rule with a con-
volutional kernel of small size, so that obstacles have effects only
locally and a growth function which has a huge negative decrease
of mass in the learnable channel to prevent any matter from going
where obstacles are present. More information in appendix A.1.6.

IMGEP. Our proposed method, based on the IMGEP framework [249],
and fully described in appendix A.1.7, starts by initializing the history
with 40 random parameters and their associated reached position
(position of the center of mass at last timestep) computed over 20
rollouts with random obstacle configurations. The method then be-
gins a loop where each step is composed of 1) the sampling of a goal
(x,y position in the grid) , then 2) a selection from the history of the pa-
rameters reaching the closest goal which will be used to initialize the
parameters, 3) an optimization of those paramaters towards the goal
under several obstacle configurations, 4) a test of those parameters
over 20 obstacle configurations to compute the final reached posi-
tion after optimization, and adding the couple (parameters, reached
position) to the history to reuse it in next steps. Pseudo code 2 and
figure A.12 illustrating the IMGEP algorithm can be found in appendix.
Details of each step of the method: 1, 2, 3, 4 can be respectively found
in appendix 7, 11, 11, 11.

In this work, the loop defined above is composed of 120 outer steps
where 1 out of 5 outer steps performs 125 steps of gradient descent
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while the rest performs random mutation on the initialized param-
eters and 15 steps of gradient descent (details on mutations in ap-
pendix 11). At every gradient descent step (Fig.1.9.), we run a Lenia
rollout with the current parameters (𝜃𝑙 , 𝐴𝑙 ) and randomobstacle place-
ment (𝐴𝑓 ) for 50 timesteps and apply a mean square error loss be-
tween the last state of the learnable channel (at last timestep) and
a disk centered at the position of the goal we want to achieve. The
gradient is then backpropagated through the Lenia steps to optimize
both the parameters of the rule 𝜃𝑙 and the initialization 𝐴𝑙 (details in
appendix 11). As stated before, the obstacles are placed only on one
side of a 256x256 grid. In total at every rollout 8 disk of radius 10 are
randomly placed as obstacles.

Note that we filter from the history parameters leading to a collapse
(mass reaches 0) and explosion of the pattern (pattern expanding too
much ) both when initializing the history with random parameters and
also after an optimization loop (when the optimization fails) so that
we do not use them as starting point for optimization in next steps.
More details on the filter we applied can be found in appendix 11.

As presented before, our IMGEP outputs 160 parameters for each seed:
40 from the initialization of history and 120 from the IMGEP steps
afterward (1 for each step). We discard the intermediate result of
optimization and in each step of the IMGEP only save the final result
of the optimization.

The initialization of the history plays an important role in the subse-
quent steps of the methods as all the following steps will be built
on top of this basis, see Fig 3.a. We thus introduce an initialization
selection in order to find promising initialization of the history. More
details on this initialization selection mechanism can be found in ap-
pendix 7. Note that those steps are counted in the total number of
lenia rollouts performed by the method for a fair comparison with
random search, and are the main source of stochasticity in the num-
ber of rollout performed by a run of the method.

Robustness Evaluation. Tomeasure the robustness of the agent against
obstacles in the “basic obstacle test”, we run 50 rollouts of 2000 timesteps
with different obstacles positions. Each rollout environment has 23
obstacles of radius 10 randomly sampled uniformly in the whole grid
and one placed in the trajectory of the moving agent (to be sure that
it encounters obstacles), more details in appendix A.1.8. At the end of
the 2000 timesteps, we compute statistics on the system rollout to de-
tect if the matter is considered as an agent. We refer to appendix A.1.8
for more information on the statistics used for empirical agency and
robustness tests. We then compute the ratio between the number of
rollouts(ie environments) where the pattern survived (passed the em-
pirical agency test) and the total number of rollouts. Robustness is
measured similarly in the generalization tests but with 10 rollouts in-
stead of 50. See appendix A.1.8 for more information on the different
generalization tests.

Handmade search. The parameters from the original lenia papers
[8, 9] are obtained from :
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https://github.com/Chakazul/Lenia. We filter out the ones with mul-
tiple channels and the ones with an initialization that does not fit in
the 256x256 grid, more details in appendix A.1.9.

1.2.5 Discussion

In closing this contribution, let us reiterate that what is interesting
in such a system is that the computation of decision is done at the
macro (group) level, showing how a group of simple identical entities
can make “decision” and “sense” at the macro scale through local in-
teractions only, and without a clear pre-existing notion of body/sen-
sor/actuator. Seeing the discovered agents, it’s even hard to believe
that they are in fact made of tiny parts all behaving under the same
rules. While some basic behavioural capabilities (spatially localized
and moving entities) had already been found in Lenia with random
search and basic evolutionary algorithms, this work makes a step for-
ward showing how Lenia’s low-level rules can self-organize robust
sensorimotor agents with strong adaptivity and generalization to out-
of-distribution perturbations.

Moreover, this work provides a more systematic method based on gra-
dient descent, diversity search and curriculum-driven exploration to
easily learn the update rule and initialization state, from scratch in
high dimensional parameters space, leading to the systematic emer-
gence of different robust agents with sensorimotor capabilities. We
believe that the set of tools presented here can be useful in general to
discover parameters that lead to complex self-organized behaviors.

Yet, several of the analyses we make in this work are empirical estima-
tions or subjective. Future work shall consider how more formal defi-
nition(s) of agency and sensorimotor capabilities could be applied to
the high-dimensional systems studied here[237, 245].

Also, engineering subparts of the environmental dynamics with func-
tional constraints (through predefined channels and kernels) has been
crucial in this work to shape the search process [266] towards the
emergence of sensorimotor capabilities, as well as used as a tool to
analyze more easily these emergent sensorimotor capabilities. An in-
teresting direction for future work is to add even more constraints in
the environment such as the need for food/energy to survive, the prin-
ciple of mass conservation, or even the need to develop some kind
of memory to anticipate future perturbations. We believe that richer
environmental constraints and opportunities might be a great leap
forward in the search for more advanced agent behaviors. For exam-
ple, behaviors like competition between individuals/species for food,
foraging or even basic forms of learningmight emerge. From this com-
petition and new constraints, interesting strategies could emerge as
a form of autocurricula, as in [39, 266].

In fact, beyond individual capabilities, we could even wonder under
what conditions one could observe the emergence of an open-ended
evolutionary process [1] directly in the environment, without any outer
algorithm, resulting in the emergence of agents with increasingly com-
plex behaviors. To achieve this, we might need to use an optimization
process similar to the one presented in this article to evolve all the

https://github.com/Chakazul/Lenia
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environmental rules instead of pre-specifying some of them by hand.
Indeed, while the engineering of specific environmental rules facili-
tates the understanding/studying of the results, having more system-
atic ways to generate them could take us closer to the fundamental
scientific quest of designing open-ended artificial systems with forms
of functional life and agency “as it could be”. Some preliminary stud-
ies are underway [267] as well as the next contribution of this chapter
Sec.1.3.

Beyond those fundamental scientific questions, future work might
also consider broader applications of this work for biology and AI. In
biology, inferring low-level rules to control complex system-level be-
haviors is a key problem in regenerative medicine and synthetic bio-
engineering [268, 269]. In this regard, cellular automata offer an inter-
esting framework to model, understand and control the emergence
of growth, form and function in self-organizing systems. However,
they remain abstract models: entities in the CA exist on a predefined
grid topology whereas physical entities have continuous position and
speed ; states in the CA are well-defined whereas it is not clear where
and how information is processed in living organisms; rules in the
CA operate at a predetermined scale whereas real-world processes
operate at nested and interconnected scales. In AI, with the recent
rise of web-deployed machine-learning models including large lan-
guage models [270, 271], we are also faced with an increasing blurring
of boundaries between the AI and the rest of the “environment” (hu-
man end-users and the web itself). It is hence central to understand
how to measure emergent agency and cognition in those AI systems,
as well as how to interact with them despite the extremely large input
and behavioral spaces involved. In this regard we believe that envi-
ronments like the one considered in this work can be useful to better
inform the debate in much bigger models, as they are rich enough to
support emergent agential behaviors while simple enough to study
those questions explicitly. Far from trivial, transferring insights from
the considered artificial systems to real biological systems or to very
large AI systems is an exciting area of research with a potential broad
range of medical and societal applications [272, 273].

In this contribution, we observed reproduction and multi-agent in-
teractions within simulations. However, the agents were governed
by identical rules, significantly limiting the potential for evolution-
ary processes to emerge, as agents were often mere replicas of each
other. Moreover, as agents could grow indefinitely without consum-
ing ”resources”, it is hard to introduce environmental constraints and
pressures.

To overcome these limitations, the next section introduces Flow Le-
nia: a mass-conservative adaptation of Lenia. By enforcing mass con-
servation, it becomes easier to implement environmental constraints
that influence agent behavior. More importantly, Flow Lenia enables
the coexistence of multiple ”species” of agents within the same grid,
fostering competition for shared resources.

As a bonus, mass conservation simplifies the discovery of spatially
localized patterns, which was a difficult task in this contribution re-
quiring complex optimization of a carefully engineered objective.
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1.3 Flow-Lenia: Towards open-ended evolution in cellular automata
through mass conservation and parameter localization

Context

This contribution is the result from the continuation of the collaboration with Bert Chan (google
deepmind Tokyo) in 2022-2023. It is also the result from the master internship of Erwan Plantec
which I co-supervised.

The contribution has been presented at the Alife 2023 conference and got the best paper award :

▶ Plantec, E., Hamon, G., Etcheverry, M., Oudeyer, P. Y., Moulin-Frier, C., Chan, B. W. C. (2023). Flow-
Lenia: Towards open-ended evolution in cellular automata through mass conservation and
parameter localization. In Artificial Life Conference Proceedings 35 (Vol. 2023, No. 1, p. 131).
MIT Press.
Paper,Code

An extended version of conference paper has been accepted in the Alife Journal (invited contribution)
and soon to be published.

We strongly encourage to take a look at the companion websites (link,link) to get a better view of the
dynamic of the system with videos, as well as our contribution to the Virtual Creatures Competition
2024 (VCC2024): video.

Abstract
Central to the artificial life endeavour is the creation of artificial systems spontaneously generat-
ing properties found in the living world such as autopoiesis, self-replication, evolution and open-
endedness. While numerous models and paradigms have been proposed, cellular automata (CA)
have taken a very important place in the field, notably as they enable the study of phenomenons
like self-reproduction and autopoiesis. Continuous CA like Lenia have been shown to produce life-
like patterns reminiscent, from an aesthetic and ontological point of view, of biological organisms we
call creatures. We propose in this contribution Flow-Lenia, a mass conservative extension of Lenia.
We present experiments demonstrating its effectiveness in generating spatially-localized patterns
(SLPs) with complex behaviors and show that the update rule parameters can be optimized to gener-
ate complex creatures showing behaviors of interest. Furthermore, we show that Flow-Lenia allows
us to embed the parameters of the model, defining the properties of the emerging patterns, within its
own dynamics, thus allowing for multispecies simulations. By using the evolutionary activity frame-
work as well as other metrics, we shed light on the emergent evolutionary dynamics taking place in
this system.

https://direct.mit.edu/isal/proceedings/isal2023/35/131/116921
https://github.com/erwanplantec/FlowLenia
https://sites.google.com/view/flowlenia/
https://sites.google.com/view/flow-lenia
https://www.youtube.com/watch?v=bAJIETmC-6o
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1.3.1 Introduction

An important challenge in artificial life (ALife) and artificial intelli-
gence (AI) is about the design of systems displaying open-ended in-
trinsic evolution (i.e unbounded growth of complexity through intrin-
sic evolutionary processes) [274]. Such a process is called intrinsic
since no final objective (i.e fixed fitness function) is set by the experi-
menter, the fitness landscape is intrinsic to the system and depends
only on its current state, as in natural evolution where there is no fi-
nal goal [31]. Seminal works by Von Neumann and Ulam in 1951 have
paved the way in this direction. They were particularly interested in
building an universal self-reproducing cellular automata (CA) capable
of achieving open-ended evolution [275] quickly followed by Codd’s
attempt [276]. Further developments in this direction have quickly fol-
lowed with Langton’s self-replicating loops, a simpler model of self-
replication in CA’s, at the cost of its universality [70]. Even though,
Langton’s loops were able to self-replicate, no variations could be in-
troduced in the process, thus making the emergence of evolution im-
possible. Fifteen years after Langton’s self-replicating loops, the goal
of obtaining an evolutionary process was achieved by Hiroki Sayama
with the Evoloops model which displays Darwinian evolution of self-
reproducing Langton’s like loops [277] (see [278] for a more complete
account of works on evolution and CA). Emergent evolutionary dynam-
ics have also been studied in the context of neural cellular automata
[88, 257] and artificial chemistry [72].

However, such systems rely on hand-defined rules, specific structures
and controlled settings, ultimately limiting the diversity of patterns
that can emerge in the system. On the other hand, even though Lenia
creatures (Sec.1.1.2) display greater diversity, different creatures are
governed by different update rules, and therefore cannot co-exist in
the same world (i.e the same simulation) and cannot interact. Obtain-
ing an evolutionary process in a CA could be achieved by embedding
information in the system locally, modifying the update rule, and thus
altering the properties of emerging creatures. This would act like a
genome, enabling multi-species simulations. Such simulations might
set the stage for evolution to occur in populations of patterns each
with their own update rule and parameters. However, achieving it in
a CA like Lenia is still an open problem.

One very important problem related to this objective is how can one
actually measure these emergent evolutionary processes. Two main
difficulties exist here. First, in such complex self-organized systems,
fitness is intrinsic, i.e there is no externally nor well-defined fitness
function, thus, one cannot have an objective measure of how adapted
an individual is (if there is even a notion of individual). Evolutionary
pressures are intrinsic to the system, where self-organised structures
have to maintain their own integrity through cooperation or compe-
tition with other structures. Secondly, such a measure of evolution
should be applicable to a wide range of systems and so rely on as
few assumptions about the studied system as possible, fundamen-
tal desiderata if one’s objective is to study life-as-it-could-be. The
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12:

framework of evolutionary activity [279, 280] proposed different mea-
sures aiming at discerning whether or not evolution is taking place,
and quantifying it, in an observed system. Such measures have been
applied to artificial systems such as Tierra [281] and Avida [282] and
have even been used to compare their dynamics to real-world data
[283]. Importantly, such a measure, or ensemble of measures, could
allow to define a clear optimization objective for ALife researchers.

We believe that adding mass conservation is a key ingredient to ad-
dress the aforementioned challenges. Such a constraint could (i) re-
strict emerging creatures to spatially localized ones, (ii) allow for the
design of multi-species simulations and (iii) provide an important
evolutionary pressure [284]. Conservation laws have been thought of
as fundamental laws for Darwinian evolution to take place [285]. We
propose in this work a mass-conservative extension to Lenia called
Flow-Lenia and demonstrate that such conservation laws effectively
facilitate the search for artificial creatures by constraining (almost all)
emerging patterns to spatially localized ones. We also show that the
update rule parameters can easily be optimized using vanilla evolu-
tionary strategies [99] with respect to some fitness functions to obtain
patterns with specific properties such as directed or angular motion.
Importantly, we show that the Flow-Lenia formulation enables the
integration of the parameters of the CA update rules within the CA
dynamics, making them dynamic and localized, allowing for multi-
species simulations, with locally coherent update rules that define
properties of the emerging creatures. By describing trajectories of
parameters over large timescales as well as by using measures of evo-
lutionary activity [279, 280] and diversity, we evaluate the evolutionary
dynamics emerging from these multi-species simulations. Moreover,
we show that this system is relevant for testing ecological theories of
evolution by studying two variations of the vanilla model, one based
on dissipative dynamics, and one with resources that creatures need
to consume for their survival. The study of the role of dissipative
dynamics in this setting is motivated by dissipation having been pro-
posed as one of the four pillars of “lyfe”, a more general definition
of life [286]. Introducing dissipative dynamics of the Flow-Lenia sys-
tem could lead to the emergence of more interesting evolutionary
dynamics characterized by higher evolutionary activity measures. On
the other hand, resource limitations coupled to a shared pool of re-
sources might create important selective pressures bootstrapping the
intrinsic evolutionary process leading to higher evolutionary activity.

This contribution comes associated with a companionwebsite https:
//sites.google.com/view/flow-lenia showing videos of the
system dynamics, as well as open-source code directly executable in
an online notebook 12.

1.3.2 Lenia

We refer to Sec.1.1.2 for a high-level description of the Lenia system
whose dynamics are illustrated in Figure 1.14.a.

https://sites.google.com/view/flow-lenia
https://sites.google.com/view/flow-lenia
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●

  a Lenia System

    b Flow-Lenia System

● Class of CA , diversity of patterns, but mostly unstable
● No mass conservation
● Difficult optimization landscape

● Class of CA, diversity of patterns
● Conservation of mass  
● Mostly Spatially Localized Patterns (SLPs)
● Easily optimized with Evolutionary Strategies (ES) 
● Local params for “Multi species” simulations 

θ¹ θ²

e Environmental 
constraints (e.g food)

Patterns from random parameters

Evolutionary 
Strategy

Fitness
Rolloutt=0 t=500

d Optimizing the rule for certain behaviors ChemotaxisDirected motion

    c Random search

f.2) Resulting evolutionary tree          f Multi species simulations, with competition for mass

→ Intrinsic evolution

● Mostly SLPs
● Statics and dynamic patterns
● Complex behaviors

Figure 1.14: Overview of the contribution. We present Flow-Lenia, an extension of the Lenia (a) continuous Cellular Automata (CA). Flow-Lenia
(b) introduces a built-in constraint for mass conservation, strongly facilitating the discovery of life-like patterns (c), the optimization of the
system parameters towards certain behaviors (d) and the introduction of environmental constraints (e). Moreover, it allows to embed the
system parameters within its own local dynamics, leading to large-scale multi-species simulations analysed in the light of the Evolutionary
Activity framework (f). (a) Lenia system. The growth 𝑈 𝑡 is computed with kernels 𝐾 and growth functions 𝐺. A small portion of the growth is
then added to activations 𝐴𝑡 to give the next state 𝐴𝑡+𝑑𝑡 . (section 1.3.2). (b) Flow-Lenia system. 𝑈 𝑡 is computed as in Lenia and interpreted as
an affinity map. The flow 𝐹 𝑡 is given by combining the affinity map and activation gradients. The next state is obtained by “moving” matter in
the CA space according to the flow 𝐹 𝑡 using reintegration tracking. (section 1.3.3). Inset on the right of (a,b) shows 7 patterns obtained with
randomly sampled update rules parameters, in Lenia (top, resulting mostly in non-SLP or empty patterns) and Flow-Lenia (bottom, resulting
mostly in SLP patterns). (c) Random search. Patterns emerging from random parameter sampling in Flow-Lenia are qualitatively analyzed
(sections 1.3.4 and 1.3.5). (d) Optimizing the system update rule is performed using simple evolutionary strategies with respect to predefined
fitness functions, resulting in creatures with specific behaviors (e.g directed motion or chemotaxis). (sections 1.3.4 and 1.3.5). (e) Environment
constraints. Example of environment with food (blue) that creatures can consume to gain mass. (f) Multi species simulations. Snapshots of
a large scale multi-species simulation enabled by the parameter embedding mechanism (section 13), resulting in a evolutionary tree (f.2)
(section 1.3.5).

We here shortly describe the Lenia update and its notations. For a
more detailed explanation, see [8, 9]. Let ℒ be the support of the
CA, here a two-dimensional grid defining the set of cells as well as
their spatial relationships. The state of the Lenia system at time 𝑡 is
then defined by the map 𝐴𝑡 ∶ ℒ → [0, 1]𝐶 where 𝐶 is the number of
channels of the system. The system update rule is then defined by
the tuple < 𝐾, 𝐺, 𝑐1, 𝑐0, 𝐴0 > where 𝐾 is a set of convolution kernels
with 𝐾𝑖 ∶ ℒ → [0, 1] satisfying ∫ℒ 𝐾𝑖 = 1 and 𝐺 is a set of growth
functions with 𝐺𝑖 ∶ [0, 1] → [−1, 1]. Each pair (𝐾𝑖, 𝐺𝑖) is associated
with a source channel 𝑐𝑖0 it senses and a target channel 𝑐𝑖1 it updates.
Connectivity can be represented through a square adjacency matrix
𝑀 of size 𝐶 where 𝑀𝑖𝑗 ∈ ℕ is the number of kernels sensing channel 𝑖
and updating channel 𝑗 . 𝐴0 is the initial state of the system. We use
the same kernels as the one used in the previous contribution Sec.1.2
and detailed in Appendix.A.1.6 . In this version, kernels are radially
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symmetrical and defined as a sum of concentric Gaussian bumps :

𝐾𝑖(𝑥) =
𝑘
∑
𝑗=1

𝑏𝑖,𝑗 𝑒𝑥𝑝 (−
( 𝑥
𝑟𝑖𝑅 − 𝑎𝑖,𝑗)2

2𝑤2𝑖,𝑗
) (1.1)

Where 𝑎𝑖, 𝑏𝑖, 𝑤𝑖 and 𝑟𝑖 are parameters defining kernel 𝑖. 𝑘 is a parameter
defining the number of rings per kernel (set to 3 here) and 𝑅 is a pa-
rameter common to all kernels defining the maximum neighborhood
radius. Each kernel is then defined by 3×𝑘+1 parameters. Growth func-
tions are defined as Gaussian functions scaled in the range [−1, 1]:

𝐺𝑖(𝑥) = 2 𝑒𝑥𝑝 (−(𝜇𝑖 − 𝑥)2
2𝜎2𝑖

) − 1 (1.2)

Where 𝜇𝑖 and 𝜎𝑖 are parameters of growth function 𝑖 so each growth
function is defined by 2 parameters. A step in Lenia is defined by the
following steps (see figure 1.14 (top)) :

1. Compute the growth at time 𝑡 given the actual state 𝐴𝑡 :

𝑈 𝑡𝑗 =
|𝐾 |
∑
𝑖=1

ℎ𝑖 ⋅ 𝐺𝑖(𝐾𝑖 ∗ 𝐴𝑡
𝑐 𝑖0) ⋅ [𝑐

𝑖1 = 𝑗] (1.3)

Where ℎ ∈ ℝ|𝐾 | is a vector weighting the importance of each pair
(𝐾𝑖, 𝐺𝑖) and [𝑐𝑖1 = 𝑗] is the Iverson bracket which equals 1 if 𝑐𝑖1 = 𝑗
and 0 otherwise (i.e equals 1 if the ith pair updates channel 𝑗).

2. Add a small portion of the growth 𝑈 𝑡 to the actual state 𝐴𝑡 to
get the state at the next time step and clip results back to the
unit range :

𝐴𝑡+𝑑𝑡𝑖 = [𝐴𝑡𝑖 + 𝑑𝑡 𝑈 𝑡𝑖 ]10 (1.4)

1.3.3 Flow-Lenia

Flow-Lenia extends the Lenia system in the sense that it reuses all the
aforementioned components. We propose for this system to interpret
activations as concentrations of “matter” in all cells and to refer to
the term 𝑈 𝑡 , previously called the growth in Lenia, as an affinity map.
The idea is that the matter will greedily move towards higher affinity
regions by following the local gradient of the affinity map 𝑈 , ∇𝑈 ∶
ℒ → ℝ2. To do so, we define a flow 𝐹 ∶ ℒ → (ℝ2)𝐶 , which can be
interpreted as the instantaneous speed of matter, as:

{𝐹
𝑡𝑖 = (1 − 𝛼 𝑡 )∇𝑈 𝑡𝑖 − 𝛼 𝑡∇𝐴𝑡Σ

𝛼 𝑡 (𝑥) = [(𝐴𝑡Σ(𝑥)/𝛽𝐴)𝑛]10
(1.5)

With 𝐴𝑡Σ(𝑥) = ∑𝐶
𝑖=1 𝐴𝑡𝑖 (𝑥) the total mass in each location 𝑥 . Here ∇𝑈 𝑡𝑖 is

the affinity gradient for channel 𝑖. The negative concentration gradi-
ent −∇𝐴𝑡Σ is a diffusion term to avoid concentrating all the matter in
very small regions akin to the clipping in Lenia which upper bounds
concentrations. In practice, gradients are estimated through Sobel
filtering. The map 𝛼 ∶ ℒ → [0, 1] is used to weight the importance
of each term such that −∇𝐴𝑡Σ dominates when the total mass at a
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13: https://sites.google.com/view/
flowlenia/model

Figure 1.15: Calculation of incoming matter to cell
𝑝 ∈ ℒ through reintegration tracking [287]. Mass
contained in cell at location 𝑝′ ∈ ℒ is moved to a
square distribution𝒟 centered on 𝑝″ = 𝑝′+𝑑𝑡⋅𝐹 𝑡 (𝑝′).
The proportion of mass from 𝑝′ arriving in 𝑝 is then
given by the integral of 𝒟 on the cell domain of 𝑝,
Ω(𝑝), denoted as 𝐼 (𝑝′, 𝑝).

given location is close to a critical mass 𝛽𝐴 ∈ ℝ>0. Intuitively, the re-
sult is that matter is mainly driven by concentration gradients in high
concentration regions and is more free to move along the affinity gra-
dient in less concentrated areas. We typically use 𝑛 > 1 such that the
affinity gradient dominates on a larger range of masses.

Finally, matter can be displaced in space according to flow 𝐹 giving
us the state at the next time step. To do so we use the reintegra-
tion tracking method proposed in [287]. Reintegration tracking is a
semi-Lagrangian grid based algorithm thought as a reformulation of
particle tracking in screen space (i.e grid space) aimed at not losing
information (i.e particles) which happens when two particles end up
in the same cell. The basic principle is to work with a distribution
of particles (i.e infinite number of particles) and conserve the total
mass by adding up masses going to the same cell. Overall, reintegra-
tion tracking can be seen as a grid-based approximation to particle
systems with an infinite number of particles, having the property to
conserve total mass. Thus, Flow-Lenia can be seen as a new kind of
model at the frontier between continuous CA and particle systems. A
particle based model directly inspired by the Flow-Lenia formulation
has been recently proposed in Mordvintsev, Niklasson, and Randazzo.
Figure 1.15 illustrates how reintegration tracking is used in our case.
The resulting update rule (animated in this video 13) is the following
:

{𝐴
𝑡+𝑑𝑡𝑖 (𝑥) = ∑𝑥′∈ℒ 𝐴𝑡𝑖 (𝑥′)𝐼𝑖(𝑥′, 𝑥)

𝐼𝑖(𝑥′, 𝑥) = ∫Ω(𝑥)𝒟(𝑥″𝑖 , 𝑠)
(1.6)

With 𝑥″𝑖 = 𝑥′ + 𝑑𝑡 ⋅ 𝐹 𝑡𝑖 (𝑥′) the target location of the flow from 𝑥′ in
channel 𝑖. Ω(𝑥) is the domain of the cell at location 𝑝, which is a
square of side 1. 𝒟(𝑚, 𝑠) is a distribution defined on ℒ with mean 𝑚
and variance 𝑠 satisfying ∫ℒ 𝒟(𝑚, 𝑠) = 1, which is in practice a uniform
square distribution with side length 2𝑠 centered at𝑚. This distribution
emulates a flow of particles from the source area Ω(𝑥′) to the target
area 𝒟(𝑥″, 𝑠), where the distribution 𝒟 emulates Brownian motion
at the low level. 𝑠 is a hyperparameter of the system which can be
seen as a form of temperature. The reintegration tracking method
is depicted in Fig. 1.15. Since the distribution 𝒟 integrates to 1, it
is clear that a cell cannot send out more mass than it contains nor
less and so the system conserves its total mass. For computational
reasons, we do not look at all cells to compute incoming matter as
described by equation 1.6 but only at the neighborhood composed
of cells whose Chebyshev distance to the target cell is less than 5
(extended Moore neighborhood) allowing for considerably reduced
computation times. Mass conservation also implies that cells’ states
are no longer bound to the unit range but can be any positive real-
valued number (𝑆 ≡ ℝ𝐶≥0). This model has been implemented in JAX
[289] allowing fast simulation on GPU (255𝜇𝑠 ±3.11𝜇𝑠 per step on Tesla
T4 GPU with 1 channel, 10 kernels, and 128 × 128 world size).

https://sites.google.com/view/flowlenia/model
https://sites.google.com/view/flowlenia/model
https://sites.google.com/view/flowlenia/model
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Flow-Lenia with parameters embedding

Flow-Lenia formulation, by considering a flow of matter, allows to at-
tach any information to themovingmatter such as the update rule pa-
rameters making them dynamic and localized. Formally, this comes to
define a parameter map 𝑃 ∶ ℒ → Θ where Θ is the parameter space.
In this work, only the kernel weighting vectors ℎ are included in the
parameter space Θ ≡ ℝ|𝐾 |. This map can then be used to compute the
affinity score in each cell 𝑥 by weighting the influence of each pair
(𝐾𝑖, 𝐺𝑖) with the localized vector 𝑃(𝑥) giving the following formula:

𝑈 𝑡𝑗 (𝑥) =
|𝐾 |
∑
𝑖=1

𝑃 𝑡𝑖 (𝑥) ⋅ 𝐺𝑖(𝐾𝑖 ∗ 𝐴𝑡
𝑐 𝑖0)(𝑥) ⋅ [𝑐

𝑖1 = 𝑗] (1.7)

While in theory, all the parameters could be embedded in the pa-
rameter map, this would come with high memory and computational
costs for some. In particular, changing the kernels parameters dy-
namically would make the use of fast convolution operations such as
fast-Fourier convolution impossible as it would require using differ-
ent kernels in all different locations of the map.
We can now move the parameters along with the matter during the
reintegration tracking phase. This necessitates deciding what to do
when different sets of parameters arrive in a same cell. We propose
two different methods which are respectively average and softmax
sampling. The former makes a weighted average of incoming param-
eters with respect to the quantities of incomingmatter and is formally
defined as :

𝑃 𝑡+𝑑𝑡 (𝑥) = ∑𝑥′∈ℒ 𝐴𝑡 (𝑥′)𝐼 (𝑥′, 𝑥)𝑃 𝑡 (𝑥′)
∑𝑥′∈ℒ 𝐴𝑡 (𝑥′)𝐼 (𝑥′, 𝑥) (1.8)

Softmax sampling, on the other hand, samples a parameter in the set
of incoming ones following the softmax distribution given by incom-
ing quantities of matter :

ℙ[𝑃 𝑡+𝑑𝑡 (𝑥) = 𝑃 𝑡 (𝑥′)] = 𝑒𝐴𝑡 (𝑥′)𝐼 (𝑥′,𝑥)

∑𝑥″∈ℒ 𝑒𝐴𝑡 (𝑥″)𝐼 (𝑥″,𝑥) (1.9)

Intuitively, themore represented set of parameters has a greater prob-
ability of being selected in the cell, like simulating in one step a com-
petition between different parameters in the cell.

In the rest of this contribution, we use the softmax mixing rule. We
chose this rule because of the competitive dynamics it creates in the
system. It enables creatures to convert mass from other creatures
with different parameters (i.e other species). This would not be possi-
ble with the average rule as each interaction would create a new set
of parameters. In addition, the average rule tends to uniformize the
parameters in the simulation.
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1.3.4 Experimental methods

The experiments are divided into three main parts. First, we perform
random search in the Flow-Lenia parameter space allowing us to qual-
itatively analyze the dynamics of the system and the typical patterns
emerging from it. In a second part, we optimize the update rules pa-
rameters as well as the initial pattern configuration in order to obtain
creatures displaying specific behaviors. Finally, we experiment with
the parameters embedding mechanism and analyze the long-term
temporal dynamics emerging from these multi-species simulations.
Each of these experiments is explained in detail in sections 1.3.4, 1.3.4
and 1.3.4 respectively, and the associated results are presented in sec-
tion 1.3.5.

Random search experiments

We performed random search in the Flow-Lenia parameter space de-
scribed in table 1.1. We refer the reader to sections 1.3.2 and 1.3.3 for
further details on the role of these parameters. Associated results
are presented in section 1.3.5.

Initial patterns 𝐴0 are set with a 40 × 40 patch with matter drawn from
a uniform distribution in the center of the grid and no matter every-
where else.

Neighborhood Growth functions
𝑅 ∈ [2, 25] 𝜇 ∈ [0.05, 0.5] *
𝑟 ∈ [0.2, 1] * 𝜎 ∈ [0.001, 0.2] *

Kernels Flow
ℎ ∈ [0, 1] * 𝑠 0.65
𝑎 ∈ [0, 1]3 * 𝑛 2
𝑏 ∈ [0, 1]3 * 𝑑𝑡 0.2
𝑤 ∈ [0.01, 0.5]3 *

Table 1.1: Flow Lenia explored parameter space. Pa-
rameters marked with a * must be sampled for each
kernel-growth function pair.

Directed search experiments

We used evolutionary strategies [99] to optimize the update rule pa-
rameters and the initial configuration 𝐴0. We trained the model with
respect to four different user-defined fitness functions, i.e tasks: di-
rectedmotion, angularmotion, navigation through obstacles and chemo-
taxis. We refer the reader to the appendix.A.2.1 for further details
about the employed fitness functions.

We used EvoSax [290] implementation of the OpenES [99] strategy
with a population size of 16 and Adam optimizer [291] with 0.01 as
learning rate. We optimized the Flow Lenia update rule with different
numbers of kernels and either 1 or 2 channels. For comparison, we
also trained the original Lenia on the directed motion task following
the same optimization procedure. The initial pattern is composed, as
in random search, of a square patch with non-zero activations placed
at the center of the world and zeros everywhere else.
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Intrinsic evolution experiments

In order to analyze the potentially evolutionary dynamics enabled by
the parameters embedding mechanism presented in section 13, we
performed simulations with larger spatial and temporal scales. A sim-
ilar attempt using the original Lenia system for large-scale simulation
of intrinsic evolution was described in [267]. By allowing multispecies
simulations, the parameters embedding mechanism also allows for
interspecies competition especially under the stochastic parameter
selection rule described in equations 1.7 as it allows species to con-
vert matter from other species. We further propose two variations of
the vanilla model, namely the dissipative and food models. During
simulation, the set of unique parameters denoted 𝒫 𝑡 ≡ {𝑃 𝑡 (𝑥)}𝑥∈ℒ is
recorded. Together with parameters, we record their associated to-
tal mass through time 𝑀(𝑝, 𝑡) = ∑𝑥∈ℒ 𝐴𝑡Σ(𝑥) ⋅ [𝑃 𝑡 (𝑥) = 𝑝]. We also
introduce a diversity metric 𝐷(𝑡) quantifying the diversity of parame-
ters and which is defined as the average distance between all present
parameters in the system at this time 𝑡 :

𝐷(𝑡) = 1
|𝒫 𝑡 | ∑

𝑝∈𝒫 𝑡
∑

𝑝′∈𝒫 𝑡
||𝑝 − 𝑝′||2 (1.10)

Where || ⋅ ||2 is the euclidean norm. We only recorded simulation data
every 100 steps for memory reasons. However, as interesting crea-
tures’ behaviors unroll in around 100 time steps, evolutionary dynam-
ics must happen on much larger scales. The simulation settings as
well as the three different models are described in more detail in the
following sections.

Simulation settings. All presented models have been simulated for
500 ⋅ 103 steps. The system is initialized with, when not stated oth-
erwise, 3 channels and 5 kernels per channel pair making a total of
45 kernels. We introduce mutations in the form of square “beams” af-
fecting a random 10×10 patch in the grid. Beams apply a perturbation
sampled from a normal distribution with mean 0 and unit variance to
the parameter map 𝑃 , the perturbation being the same for all cells
in the affected patch. While we could have implemented mutations
on single cells only, it would have been unlikely for any mutation to
have the opportunity to develop as they would be quickly overtaken
by their neighbors. Affecting larger zones using beams gives a muta-
tion better chances of developing. Mutation rates are controlled by
the parameter 𝑝𝑚𝑢𝑡 which is the probability of a mutation beam ap-
pearing at each time step. All simulations have been repeated with 5
different random seeds.

Model variations. We propose in this work three different variations
of the Flow-Lenia model, namely: vanilla, dissipative and food which
are presented hereafter.
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Vanilla. In this setting, the environment is simply initialized with 64
creatures. Each creature is initialized as a 20 × 20 square patch which
position is uniformly sampled on the grid ℒ . Matter concentrations
(𝐴) in these patches are also sampled uniformly in [0, 1] and parame-
ter (𝑃) is sampled following a normal distribution and set identically
for all cells in a patch.
In this setting, high fitness parameters are the ones leading to crea-
tures able to preserve and increase their associated mass. Note that
here, creatures can only grow by converting matter from other crea-
tures. This creates pressures for strong individuality, especially with
the stochastic update rule, as it incentivizes creatures to protect their
resources. But strategies that are too defensive, preventing a param-
eter set from expanding (i.e gaining mass and territory), might put it
at risk as it might make it more vulnerable to disappear because of a
random mutation beam.

Dissipative. In the dissipative setting, the world is initialized in the
same way as the vanilla setting and mutations are also used in the
same way. The difference is that in this setting we regularly remove
matter and the associated parameters and add new ones, thus creat-
ing dissipative dynamics. To do so, we use two new types of beams,
one removes matter and parameters in the affected patch, the other
adds a new creature (i.e a patch with random parameters, as in the
initial pattern) at another affected location sampled in a 100×100 cor-
ner of the grid, the input zone, with randomly initialized parameters.
The new creature is initialized in the same way as the initialization
phase. The rate at which the dissipative beams appear is controlled
by parameter 𝑝𝑑𝑖𝑠𝑠 .
We expect the dissipative setting to create more interesting evolution-
ary dynamics characterized by higher evolutionary activity measures
(see section 1.3.4) by creating an environment with a constant input
of novelty in the form of new parameters while conserving more sta-
ble zones in the environments (i.e the ones further from the input
zone).

Food. In this last setting, we introduce an additional ”food” mech-
anism where creatures would need to collect resources in order to
replenish their own constantly decaying pool of resources. To do so,
we let matter decay at a fixed rate 𝜌𝑑𝑒𝑐𝑎𝑦 , and create a ”food” map
Ψ ∶ ℒ → [0,∞). When matter is in a cell where there is also food,
then food is transformed into matter at a given rate 𝜌𝑑𝑖𝑔𝑒𝑠𝑡 giving the
following update.

{𝐴
𝑡+𝑑𝑡 (𝑥) = ⋯ + [𝐴𝑡 (𝑥)𝜌𝑑𝑖𝑔𝑒𝑠𝑡 ]Ψ

𝑡 (𝑥)
0 − 𝐴𝑡 (𝑥)𝜌𝑑𝑒𝑐𝑎𝑦

Ψ𝑡+𝑑𝑡 (𝑥) = Ψ𝑡 (𝑥) − [𝐴𝑡 (𝑥)𝜌𝑑𝑖𝑔𝑒𝑠𝑡 ]Ψ
𝑡 (𝑥)

0
(1.11)

Where ⋯ refers to the update equation 1.6 and [⋅]𝑏𝑎 is the clip function
between 𝑎 and 𝑏. We enable creatures to sense food by adding kernels
and growth function from the food map Ψ to creatures’ channels 𝐴.
The food map is initialized with 32 5×5 food squares (where the value
of the map is set to 1 for all cells in the patch) randomly sampled on
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the grid. At each time step, a new food patch is added with probabil-
ity 𝑝𝑓 𝑜𝑜𝑑 .
In this model, a high fitness creature is one able to counter its con-
stant decay by either converting matter from other creatures (i.e be-
ing a predator), or consuming food resources. Such a constraint for
creatures, creating a need to find food for their continued existence,
together with a common pool of resources, might create strong evolu-
tionary pressures and competitive dynamics, bootstrapping the emer-
gence of evolutionary processes in the system. Moreover, the ad-
dition of the food constraint and the necessity to counter-act their
decay introduce the notion of a minimal criterion, i.e a criterion crea-
tures must met in order to expand, which has been proposed as a fun-
damental ingredient for open-ended evolution to emerge [5, 292].

Measuring evolutionary activity. Multiple measures of evolutionary
activity have been proposed in the literature. In this work, we use two
different measures, namely count-based evolutionary activity (𝐸𝐴𝐶 )
and non-neutral evolutionary activity (𝐸𝐴𝑁 ) [280]. Evolutionary ac-
tivity metrics are based on records of the presence and counts of
different components in a system. Components can be for instance
molecules or species. In our case, the components are the differ-
ent parameters, meaning that a component, or species, is a unique
point in the parameter space. Hence, two sets of parameters with in-
finitely small differences are considered as different species, regard-
less of their phenotypic outcome. This is a current limitation of the
study as discussed in the section 1.3.6. We here use both parameter
sets 𝒫 𝑡 and associated masses 𝑀 to compute component level ac-
tivities 𝑎𝐶𝑝 (𝑡) and 𝑎𝑁𝑝 (𝑡) for count-based and non-neutral activities re-
spectively. Count-based activity is based on the total mass associated
with a given set of parameters. At each time step, the count-based
activity of a component is incremented by its total associated mass
if this component exists:

𝑎𝐶𝑝 (𝑡) = (𝑎𝐶𝑝 (𝑡 − 1) + 𝑀(𝑝, 𝑡)) ⋅ [𝑝 ∈ 𝒫 𝑡 ] (1.12)

Where [𝑥] is the Iverson bracket which equals 1 if 𝑥 is true and 𝑀(𝑝, 𝑡)
is the mass associated to species 𝑝 at time 𝑡 .
Intuitively, the greater the total mass of a parameter 𝑝 is, and the
longer it survives, the higher will be its activity 𝑎𝑝 . While count-based
activity can give useful insights, it does not tell much about the quan-
tity of change happening in the environment. Non-neutral activity
solves this issue by penalizing periods of stasis. Here, the activity
of a component is incremented by the square of the change of its
proportion in the population of components if it increased. Hence, if
multiple components stay very stable, i.e reach a stable equilibrium,
their activities will remain constant. However, if a component sees its
proportion in the population going up then its activity will increase.
This measure thus prevents periods of stasis from contributing to the
evolutionary activity measure. This is formally defined by the follow-
ing set of equations:
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⎧⎪
⎨⎪⎩

𝑎𝑁𝑝 (𝑡) = (𝑎𝑁𝑝 (𝑡 − 1) + Δ𝑁𝑝 (𝑝, 𝑡)) ⋅ [𝑝 ∈ 𝒫 𝑡 ]
Δ𝑁𝑝 (𝑡) = (∑𝑝′ 𝑀(𝑝′, 𝑡)) ⋅ (𝜌(𝑝, 𝑡) − 𝜌(𝑝, 𝑡 − 1))2 ⋅ [𝜌(𝑝, 𝑡) > 𝜌(𝑝, 𝑡 − 1)]
𝜌(𝑝, 𝑡) = 𝑀(𝑝,𝑡)

∑𝑝′ 𝑀(𝑝′,𝑡)
(1.13)

Global activity at a given time is simply defined as the sum of all com-
ponents activities at this same time step: 𝐸𝐴∗(𝑡) = ∑𝑝(𝑎∗𝑝(𝑡)) where ∗
is either 𝐶 or 𝑁 for count-based and non-neutral evolutionary activi-
ties respectively.

1.3.5 Results

Random search

(a) Flow-Lenia

(b) Lenia

Figure 1.16: Patterns obtained from 105 different ran-
domly sampled update rule parameters in (a) FLow-
Lenia and (b) Lenia systems. Each pattern is ob-
tained by simulating the systems for 150 steps from
an initial state composed of a 40×40 patch with uni-
formly sampled concentrations. The exact same 105
parameter sets are used for both systems.

By performing random and manual search of the Flow Lenia param-
eter and hyperparameter space described in table 1.1 we have been
able to discover SLPs with already interesting and complex behaviors
some of which are displayed in figures 1.16 and 1.17.
Most of the patterns generated in Flow Lenia are SLPs (see figure
1.16(a)) with rare exceptions found by manually setting parameters to
specific configurations leading to scattered matter. We can see in fig-
ure 1.17(b) that the same parameters mostly lead to empty or explod-
ing patterns in the Lenia system. Using multiple kernels led to the
emergence of SLPs with more complex shapes and behaviors. While
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 1.17: Flow Lenia creatures. (a-c) Samples of
creatures found through random search in Flow
Lenia parameter space. (d-f) and (g-i) Timelapses
of patterns found through random search. Col-
ors in (g-i) code for different channels. (j) Effect
of changing temperature in Flow Lenia, tempera-
ture is linearly increasing from left to right. Videos
are available at https://sites.google.com/
view/flow-lenia.

Figure 1.18: Timelapse of simulation with parame-
ter embedding and food (in blue) showing division
events (highlighted with boxes). Videos are avail-
able at this link.

part of emerging patterns tend to be static ones, dynamic patterns are
quite common in Flow Lenia. For instance gyrating SLPs (Fig. 1.17.a) or
snake like patterns (b) with complex motion emerging from attrac-
tion/repulsion dynamics can be frequently observed. Dividing and
merging dots (c) resembling reaction-diffusion patterns are also a
common pattern. Timelapse (d-f) shows a creature with complex and
unpredictable dynamics emerging from the interactions of its mem-
brane, multiple organoids-like structures and a central nuclei ulti-
mately leading to a phase transition happening in (e). Timelapse (g-
i) shows a 2-channels creature displaying complex division patterns
and interesting modular creatures whose characteristics change de-
pending on their total mass while being of the same “kind” (i) (see 5
creatures on the leftmost part of (i)). Note that multi-channel crea-
tures often showmore complex dynamics and patterns with verymod-
ular shapes where each channel seems to occupy a different role. (j)
shows the effect of changing the size of the reintegration tracking
distribution 𝑠 (see equation 1.6 and figure 1.15), a parameter we call
temperature. Here temperature is linearly increasing from left to right
showing very different phases of the systems. More interestingly, pat-
terns at the frontier between the Turing-like phase (center) and the
equilibrium phase (right) are much more dynamic and display unpre-
dictable dynamics suggesting a critical regime.

Small scale simulation with food. By performing short simulations
with random sets of parameters, parameter embedding, and food, we
have been able to observe interesting patterns. First, we have been
able to observe that some creatures, while not having trained for it,

https://sites.google.com/view/flow-lenia
https://sites.google.com/view/flow-lenia
https://sites.google.com/view/flowlenia
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(a)

(b) (c) (d) (e)

Figure 1.19: (a) Results of evolutionary optimiza-
tion. C is the number of channels of the system
and 𝑘 is the number of kernels and growth func-
tions. When performing the exact same optimiza-
tion for directed motion in the original Lenia sys-
tem (yellow curve), not only optimization is unsta-
ble but it only discovers exploding patterns. (b-e)
Creatures found through optimization. (b) Directed
motion with 2 channels and 20 kernels. (c) Angu-
lar motion with 2 channels and 20 kernels. (d) Mo-
tion through obstacles with 2 channels and 25 ker-
nels. (e) Chemotaxis with 2 channels and 25 kernels.
Videos are availabe at https://sites.google.
com/view/flow-lenia.

are able to go towards nearby food sources and consume them. We
can hypothesize that creatures with such a capability will survive (and
grow) while others will not, leading to intrinsic evolution. Quite in-
terestingly, complex patterns can emerge from the change of mass
induced by decay or food consumption. For instance, when growing
after eating, some creatures will divide into two identical creatures
as shown in figure 1.18 (f), a crucial pattern for evolution to occur. On
the other hand, mass decay also leads to interesting dynamics where
creatures undergo phase transitions, changing their shape and behav-
ior, when their mass falls below a certain threshold which can lead
them to adopt foraging behaviour for example while being initially
static.

Optimizing Flow Lenia creatures

Flow-Lenia update rule parameters can also be easily optimized so
to generate patterns with specific behaviors. This is a difficult task in
Lenia as it would require constantly monitoring the existential status
and the spatially-localizedness of evolved creatures. Thus, training
creatures in Lenia requires to define characterizations of creatures
accounting for such properties which is a far from trivial problem.
Moreover, even if one can come up with proxies to find spatially local-
ized patterns, the optimization process remains difficult necessitating
advanced optimization methods like curriculum learning used in the
previous contribution Sec.1.2. In Flow Lenia, the spatial localization
constraint is intrinsic to the system thus removing the necessity to

https://sites.google.com/view/flow-lenia
https://sites.google.com/view/flow-lenia
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account for it when searching for creatures.
Using evolutionary strategies [99] we have been able to find creatures
solving various tasks such as:

Directed motion. The creature is able to move as fast as possible
in one direction. Efficient solutions can be found in the 2 channels
condition but not in the single channel case. However, when run-
ning the optimization algorithm for longer (e.g 5000 generations), we
have been able to find single channel creatures with similar fitness
than their 2 channels counterpart. Increasing the number of kernels
led to faster discovery of good solutions. The best performing crea-
ture is shown in figure 1.19(b). This creature moves because of attrac-
tion/repulsion dynamics between the 2 channels which might explain
why directed motion is much easier to attain with multi-channels
creatures. On the other hand, the optimization of the original Lenia
model is much less stable and discovered patterns are less success-
ful than their mass-conservative counterparts. Moreover, every Lenia
optimized patterns are exploding ones.

Angular motion. The creature is able to maximize its straight line
speed as well as to make turns. The best performing creature, shown
in figure 1.19 (c), displays very complex internal dynamics leading it
to periodically make 180° turns while moving in a straight line the
rest of the time. These dynamics seem to be generated by attraction-
repulsion dynamics like the ones observed in directed motion but
here in a more intricate morphology.

Navigation through obstacles. The creature is able to maximize its
traveled distance while multiple obstacles are placed on its way. We
have been able to successfully train creatures able to move and main-
tain their integrity when making contact with walls such as the one
shown in figure 1.19 (d) which is able to resist deformation and find a
way out of the “forest”. In comparison, solving a similar task in Lenia
required complex optimization methods based on curriculum learn-
ing, diversity search and gradient descent over a differentiable CA in
Sec.1.2. However, such a comparison is difficult because Flow Lenia
creatures are inherently more robust due to the conservation of mass,
whereas Lenia creatures can disappear because of perturbations.

Chemotaxis. The creature is able to follow a concentration gradient,
encoded in a separate channel and which it is able to sense through
some kernels, towards its source. The best solutions such as the one
shown in figure 1.19 (e) are perfectly able to climb the gradient towards
its maximum.

For further details on the optimization procedure, we refer the reader
to the appendix.A.2.1.
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Different local
parameters lead to

different morphologies
Competition between
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Figure 1.20: Emergent evolution in a multi species
simulation in Flow Lenia. Video at https://sites.
google.com/view/flowlenia/

Figure 1.21: Vanilla Snapshots of simulations for the
vanilla model. Colors are defined by the parame-
ter map while intensity is set by concentrations of
matter. The snapshots shows a very large and sta-
ble green structure, instance of a larger scale crea-
ture. Videos of different simulations are available in
the associated website https://sites.google.
com/view/flow-lenia

Figure 1.22: Dissipative Snapshots of simulations for
the , dissipative model. Colors are defined by the
parameter map while intensity is set by concen-
trations of matter. Videos of different simulations
are available in the associated website https://
sites.google.com/view/flow-lenia

Figure 1.23: Food Snapshots of simulations for the
food model. Colors are defined by the parameter
map while intensity is set by concentrations of mat-
ter. Videos of different simulations are available in
the associated website https://sites.google.
com/view/flow-lenia

https://sites.google.com/view/flowlenia/
https://sites.google.com/view/flowlenia/
https://sites.google.com/view/flow-lenia
https://sites.google.com/view/flow-lenia
https://sites.google.com/view/flow-lenia
https://sites.google.com/view/flow-lenia
https://sites.google.com/view/flow-lenia
https://sites.google.com/view/flow-lenia
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(a) (b)

(c)

Figure 1.24: Visualization of Flow-Lenia evolution-
ary trajectories through projection in the parame-
ter subspace formed by the principal components
of the set 𝒫 of parameters having existed during
the simulation. (a) and (b) show two different evo-
lutionary trees obtained from simulations of the
food model (a) and vanilla model with determinis-
tic parameter mixing rule (b). Colors are coding for
time (from purple to red) showing for instance two
branches having survived and one which went ex-
tinct in (a). (c) is an alternative visualization of the
data in 2 dimensions where the x axis is the first
principal component, the y axis is the time axis, col-
ors code for the second principal component ob-
tained from a simulation with the vanilla model.

Figure 1.25: Evolution of the number of different pa-
rameters through time for different mutation rates
𝑝𝑚𝑢𝑡 . (left) The number of different parameters is
plotted against time where error bands correspond
to the standard deviation over 5 different runs.
(right) The average number of different parameters
over time is plotted against 𝑝𝑚𝑢𝑡 .

Intrinsic evolutionary dynamics

Snapshots of sampled simulations can be seen in figure 1.20 1.21,1.22,1.23.
In all settings we tried, we visually observed changes in the set of pa-
rameters present in the environment through time, often with some
species taking over others, leading to extinctions, and mutations giv-
ing rise to new species able to survive. We also observe interesting
interspecies dynamics where different parameters form stable struc-
tures without competing which can be seen as some form of coopera-
tion or symbiosis. It should be noted that the general appearance of
simulations highly depends on the parameters of the system, i.e the
kernels and growth function parameters which stay fixed during sim-
ulation. While some simulations are visually appealing to us, display-
ing creatures with different scales and behaviors, other might look
much more chaotic with only very small dot-like creatures creating
poorly human-readable dynamics.
In order to analyse how the parameters evolve through time and
move in the parameter space, we first obtained the subspace of max-
imal variation of the parameter space through Principal Component
Analysis (PCA). Principal Components were fitted with the complete
set of parameters having existed through simulation 𝒫 ≡ ∪0≤𝑡≤𝑇𝒫 𝑡 ,
where 𝒫 𝑡 is the set of parameters present in the world at time 𝑡 . Then,
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we can visualize trajectories in the parameter space by projecting the
set of parameters present at each timestep 𝒫 𝑡 in this subspace. Ex-
ample of trajectories are shown in figure 1.24. Interestingly, we can
notice that motion in this space looks far from random and take the
form of a tree, an evolutionary tree. We can see the formation of dif-
ferent branches which could be seen as instances of speciation. This
differentiation clearly indicates the presence of an intrinsic fitness
landscape. We also observe that trees obtained from simulations
with the deterministic sampling rule for parameters (see sections 13)
have much thinner branches and distinctive trajectories. Interest-
ingly, the stochastic sampling rule only adds more stochasticity in
the interactions between species, not on the parameters, indicating
that these trajectories are effectively produced by an intrinsic fitness
landscape seemingly sharper under the deterministic sampling rule
(i.e with less noise in the intrinsic fitness of a creature). It is impor-
tant to note that these dynamics are clearer for higher mutation rates
𝑝𝑚𝑢𝑡 because they produce much more different parameters as muta-
tions are the only way of introducing new parameters in the system.
However, when looking at the relationship between the total number
of parameters |𝒫 | and the mutation rates, as shown in figure 1.25, we
can see that they relate sub-linearly. This indicates the presence of
competitive dynamics in the system, since without competition the
number of parameters will necessarily increase linearly with the mu-
tation rate. Interestingly, after a rapid growth, the number of different
parameters tends to stay very stable through time and this for all the
different values of 𝑝𝑚𝑢𝑡 also indicating the presence of intrinsic regu-
lation mechanisms.
When measuring evolutionary activity of the system, we also notice
large differences when varying the mutation rates in the vanilla set-
ting as shown in figure 1.26. Importantly, results show a rapid decline
of evolutionary activitymeasures for greatermutation rates where the
relation is best fitted by a power law with slope 𝛾 = −0.5 (𝑅2 = 0.75)
for non-neutral activity and 𝛾 = −0.71 (𝑅2 = 0.71) for count-based ac-
tivity. These results are consistent with results from Droop and Hick-
inbotham where they observed declines of evolutionary activity for
too high mutation rates. When expressing the evolutionary activities
as a function of time for different mutation rates, all of the curves
are better fitted by a linear model. The slopes of these fitted curves
are higher for low mutation rates and when plotting the slope of the
curve over the mutation rate (figure 1.26) we can observe a decay fol-
lowing a power function.

When comparing the vanilla, dissipative and food models respective
evolutionary activities we observe that dissipative and food models
display significantly higher evolutionary activities for both count-based
and non-neutral measures (𝑝 < 10−5 for both, Mann-Whitney test).
The dissipative model also shows higher evolutionary activity than
the food model (𝑝 < 10−5 for both, Mann-Whitney test). However, one
should note that in the case of the food and dissipative models, total
mass in the environment is not ensured to stay constant. This cre-
ates a bias in the evolutionary activity measures which takes mass
into account. When removing the total mass effect by dividing the
evolutionary activity by the total mass in the environment, we obtain
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Figure 1.26: Evolutionary activity measures through
time for different mutation rates 𝑝𝑚𝑢𝑡 in the vanilla
model. Intuitively, the greater the total mass of a pa-
rameter 𝑝 is, and the longer it survives, the higher
will be its count-based activity ; with an additional
penalization for stasis for the non-neutral activity
(see section 1.3.4 for formal definitions). Measures
of non-neutral (top) and count-based evolutionary
activity (bottom) are shown. (left) Evolution of the
evolutionary activity is shown as a function of time,
dotted lines show the best fitting linear model. The
inner plots show the the slopes of these models
against their respective mutation rates 𝑝𝑚𝑢𝑡 , dashed
lines indicate best fitting power function. (right) Av-
erage values of evolutionary activity over time are
plotted against mutation rates, dashed line shows
the best fitting power function.

Figure 1.27: Comparison of non-neutral (top), count-
based (middle) evolutionary activities and diversity
(bottom) for the vanilla, dissipative and food mod-
els. (left) Metrics are plotted as a function of time
for each model. For the evolutionary activity, inner
plots shows the corrected measures (divided by to-
tal mass in the environment). (right) Distributions
of respective metrics for each model (estimated
through kernel density estimation).

the opposite relationships. We especially observe much lower mea-
sures in the dissipative case in comparison to the other two models.
While the vanilla model shows a higher score than the food model
when corrected activity is averaged over all time steps, we can see
similar values in the end of simulations indicating a slower rise for
the food model. Diversity measures (see figure 1.27, bottom) show
striking differences where the dissipative model produces much less
diversity than the other two. This might seem counter-intuitive as
of the three it is the only one inputting new parameters. However,
since the parameter map is never regularized, intrinsically evolving
parameters can take any value which might be way out of the dis-
tribution from which we sample new parameters (𝒩 (0, 1)). The food
model shows a quicker rise in diversity in comparison to the vanilla
model but also stabilizes quicker while the vanilla model displays a
steady constant linear growth of diversity.

1.3.6 Discussion

Due to the mass conservative nature of Flow Lenia, most of the pat-
terns do not grow indefinitely into spatially global patterns (i.e pat-
terns that diffuse on the entire grid, also called Turing-like patterns),
therefore SLPs are much more common and easier to find. This is an
important difference from the previous versions of Lenia, where one



1 Low level: emergence of basic cognition and open ended evolution 70

needs to search or evolve for patterns that are both non-vanishing
and non-exploding, and to constantly monitor their existential status
(as it was the case in the previous contribution Section 1.2). Here, the
mass conservation constraint acts as a regularizer on the kinds of pat-
terns that can emerge.
Even though patterns generated by Flow Lenia are often static or
slowly moving, we have been able to find creatures with complex dy-
namics from random search only which would be a difficult task in
Lenia as most of the search space corresponds to either exploding
or vanishing patterns. Furthermore, we have shown that the update
rule parameters can be optimized with simple evolutionary strategies
to generate patterns with specific properties and behaviors such as
locomotion, chemotaxis and navigation through obstacles. Doing so
in Lenia is a difficult task since the spatial localization of emergent
patterns is not guaranteed necessitating more complex algorithms
accounting for such a property.
Finally, we showed that the Flow Lenia system allowed for the integra-
tion of the update rule parameters within the CA dynamics, allowing
for the coexistence of multiple update rules, and thus different crea-
tures or species within the same simulation. The quantitative and
qualitative analysis of trajectories of parameters through time, as well
as the application of evolutionary activity metrics [280] and diversity
metrics allowed us to shed light on the intrinsic evolution taking place
in larger spatio-temporal scale simulations of this system. Intrinsic
evolution, i.e evolution without externally defined stationary fitness
function, is a particularly important feature of life as it supports its
open-endedness through mechanisms such as niche construction.
We argue that such multispecies simulations represent an important
step towards the design of emergent microcosms [293] in which could
emerge intrinsic, maybe open-ended, evolutionary processes through
inter-species interactions. Whereas environment design is poorly ad-
dressed and quite challenging in cellular automata systems, we be-
lieve that it is crucial to study the emergence of agency and cognition
in those systems as argued in [294] and shown in previous contribu-
tion Section 1.2. By proposing different environment designs inspired
by theories about origins of life and evolution, we have been able
to study the evolutionary influences of such variations. By enabling
the design of complex environmental features like inter-species in-
teractions, walls, food or temperature, Flow-Lenia could represent a
particularly interesting system to study theories on the origins of life
or ecological theories of the evolution of complexity and cognition
[41, 230].
Lot of exciting roads remain to be taken in order to fully capture the
value of complex self-organized systems such as Flow-Lenia and ex-
plore their potential as models for studying theories about life, cog-
nition and evolution. While we showed that evolutionary activity met-
rics are applicable to the Flow-Lenia system with minimal modifica-
tion, we have shown that EA measures are able to characterize the
effect of different experimental conditions (vanilla, dissipative and
food) on the resulting evolutionary dynamics. In evolutionary biol-
ogy and theories on the origins of life, the presence of a dissipative
mechanism as well of limited shared resources are considered as
key drivers of open-ended evolution in the natural world. However,
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our results show an inverse tendency compared to these predictions,
where the EA of the dissipative and food conditions are lower than in
the vanilla systems. This is an interesting illustration of the interest
of quantitative models such as Flow-Lenia, encouraging the formal
definition of such mechanisms and measures. Our results show that
common predictions on the origins of life actually strongly depend
on their specific instantiation, since in our current model we actually
observe the inverse tendency. However, we think that more improve-
ments have to be made here. In particular, our working definition
of species, i.e a specific point in the parameter space, might not fully
capture what species are in our system. Looking at the distribution of
parameters revealed the ubiquitous presence of clusters coherently
moving in the high-dimensional space of parameters with occasional
divisions (i.e. branchings). We believe that the correct definition of
a species in Flow-Lenia might lie in these coherent clusters which
might, through the scope of evolutionary activity metrics, shed new
light on Flow-Lenia evolutionary dynamics. Another important contri-
bution could also be to take into account the phenotypic outcomes
of the parameters in the definition of species. Beside the notion of
species, the definition of individuals could be reframed, or refined, as
we often observe in simulations stable structures one would identify
as an individual creature in the system but which are composed of
elements defined by different sets of parameters. While evolutionary
theories have for a long time thought about genes as the fundamental
unit of selection, recent theories propose that the individual, or agent,
should be seen as the fundamental unit of evolution [295]. Further
study using Flow-Lenia might benefit investigating new methods for
defining these individuals, for example using information theoretic
measures of individuality [237]. Also, while measures of evolutionary
activity represent a great tool for getting insights into the complex
emerging dynamics of Flow-Lenia, other measures could be adapted
and used in this setting. For instance, Patarroyo et al. proposed a
framework based on assembly theory [297] aimed at quantifying the
open-endedness of discrete CA [296].
In conclusion, we believe that Flow-Lenia represents an important
step towards the realization of open-ended evolutionary dynamics in
silico. By enabling great diversities of creatures to emerge, interact
and evolve in complex large-scale environments, Flow-Lenia could
lead to the emergence of complex cognition in the most as-it-could-
be sense of the term. These emerging dynamicsmight shed new lights
on studies about the origins of life and cognition.

1.4 Chapter conclusion Summary

▶ Applying diversity search algorithms to a
continuous cellular automaton enables
the discovery of artificial creatures dis-
playing features of sensorimotor agency
with interesting generalization abilities.

▶ Introducing mass conversation in a con-
tinuous cellular automata enablesmulti-
species simulations bootstrapping a
proto-evolutionary mechanism.

In this chapter, we provided in the first section Sec.1.2 a method based
on gradient descent, diversity search and curriculum-driven explo-
ration, allowing to easily learn the update rule of a CA leading to
the systematic emergence of robust agents with sensorimotor capa-
bilities. These results shows how matter in an initially lifeless envi-
ronment, whose dynamics is simply driven by the physic of the sys-
tem, can self organize into artificial creatures displaying features of
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simple ”cognition”. Remarkably, these macro-agents display coordi-
nated behavior without a central control system, relying instead on
the interaction of many atomic components. We also observed im-
pressive generalization capabilities of the self-organized agents to
conditions never seen during the search, reminiscent of the general-
ization abilities of self-organizing systems [51, 52], showing its poten-
tial usefulness for building robust AI agents.

In a second section, we introduced mass conservation into the Le-
nia cellular automaton. This enhancement led to more stable pat-
terns and facilitated the incorporation of environmental elements
and pressures. Most importantly, this extension enabled us to sim-
ulate ”multi-species” interactions, where different sets of rules co-
exist within the same simulation. These multi-species simulations
displayed competition between species for matter, ultimately lead-
ing to ”intrinsic evolution”. This demonstrates how a lifeless environ-
ment, with only matter and local physic rules, can bootstrap evolu-
tionary dynamics. Our investigations into Lenia and Flow Lenia reveal
promising avenues for understanding emergent complexity and even-
tually open-ended evolution with minimal engineered bias in self-
organizing systems.

While the self-organized agents displayed promising robustness and
generalization capabilities, their cognitive abilities still lag far behind
those of agents within the mechanistic framework, which feature a
clear body-brain distinction (such as reinforcement learning agents
in AI). Further work could explore how to find rules leading to the self-
organization of agents with more advanced forms of cognition such
as memory and learning. In particular, we have seen that the mass
conservationmechanism introduced in flow lenia tends tomostly pro-
duce spatially localized patterns, which were difficult to find in our
first contribution Sec.1.2 (requiring to explicit this constraint in the
engineered objective) due to Lenia’ instability. In future work, this
property of flow lenia is a promising direction to favor the discovery
of spatially localized agents with more advanced forms of cognition,
as exemplified in Sec.1.3.4.

In addition, work from the first contribution section.1.2, required an
engineered objective function which had to be designed with expert
knowledge. This contrasts with natural evolution which does not have
an explicit target, yet still led to very complex beings. Similarly, Flow
Lenia’s open-ended evolution could potentially lead to the sponta-
neous (bottom-up) emergence of complex agent behaviors, includ-
ing sensorimotor capabilities, purely through evolutionary dynamics
rather than explicit optimization.

However, while emergent ”evolutionary dynamics” in Flow Lenia is
a promising avenue to achieve open-ended dynamics in silico, run-
ning flow-lenia simulation for a long time still seems to mostly lead
to a ”winner takes all” outcome where only one ”species” covers the
whole system. This suggests that there are still missing conditions
in our simulations that could enable truly open-ended evolution, i.e.
the continual evolution of creatures with increasingly diverse and
complex phenotypes. Finding such conditions is our main long-term
goal and we present below a few research directions we consider as
promising.
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For example, a potential next step is to explore the parameter space in
Flow Lenia to search for system initialization and dynamics promoting
sustained evolutionary activity. This could employ quality diversity
search methods similar to those used in our first contribution Sec.1.2,
though the challenge lies in developing robust metrics accounting for
system increasing complexity.

Another avenue involves introducing engineered environmental ele-
ments into Flow Lenia, similar to approaches used in our first con-
tribution Sec.1.2, to create niches that encourage diverse specializa-
tion. Ideally, such environment configuration would directly emerge
through ecosystem evolution, rather than requiring explicit engineer-
ing. In fact, in this ”all environment” simulation, interactions between
agents and their environment dynamically reshape the environment
configuration and could therefore create local niches through agents’
activities and interactions.

In the next chapter, we will focus on studying such feedback loops,
where agent adaptation results in changes of the environment prop-
erties, in turn modifying adaptation pressures on the agents.
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In the previous chapter, we explored the emergence of individuals
from an initial lifeless environment through the self-organization of
simple entities (Sec.1.2). We further pushed this toward exploring
the self-organization of open-ended evolution driven purely by the
system’s physics (Sec.1.3). In these simulations, the complex inter-
actions between environmental entities created cascading changes
in the environment’s composition, generating novel selective pres-
sures. In this chapter, we will now study in more detail this interplay
between agents and the environment (notably their intertwined tra-
jectories).

While our previous chapter adopted an enactivist framework (See
Sec.1.2) – with no predefined interface between agents and environ-
ment and in which every component of an individual contributes to
cognition -— we now shift to a more standard mechanistic framework
(See Sec.1.2). This approach presupposes embodied agents distinctly
separated from their environment, each equipped with a predefined
set of sensors and actuators controlled by a centralized ”brain”. See
Fig.2.1 for a comparison between the two frameworks. We also intro-
duce pre-programmed adaptation mechanisms into our simulations.
This transition from an enactivist to a mechanistic framework serves
two main purposes. First, it allows us to implement agents that pos-
sess more sophisticated cognitive capabilities than those emerging
in our cellular automaton simulations, as well as environments with
more controlled dynamics. Second this shift enables us to study in
more detail the interactions between adaptive agents themselves and
their environment. In this chapter, we will focus in particular on study-
ing how agents adapt to environmental constraints and opportunities,
as well as on how this adaptation in turn modifies environmental dy-
namics.

Eco-evolutionary feedbacks

▶ ”Organisms not only adapt to environ-
ments, but in part also construct them
[202]. Hence, many of the sources of nat-
ural selection to which organisms are
exposed exist partly as a consequence
of the niche constructing activities of
past and present generations of organ-
isms.”[203]

▶ ”‘Reciprocal causation’ captures the
idea that developing organisms are not
solely products, but are also causes, of
evolution.” [204]

As introduced in the beginning of this thesis Sec.0.3.2, in the natural
world, ”developing organisms are not solely products, but are also
causes, of evolution” [204]: they actively shape their environment
through niche construction, thereby influencing the fitness landscape,
opportunities, and selective pressures [203, 205–208]. This interplay
leads to eco-evolutionary feedbacks [204], where the evolved behav-
iors of organisms impact their surroundings, which in turn influence
future evolutionary pressures, potentially shaping the behavior in an
open-ended manner. (Fig.2.2).

In this chapter, we employ simulations lasting over an extended pe-
riod of time with ecological inheritance [203] (the fact that the envi-
ronment is also transmitted to the next generation Fig.2.2), allowing
the study of the durable impact of the agent on the environment,
the new pressures and opportunities it induces, and the overall eco-
evolutionary feedback loop effects. This approach constitutes a sig-
nificant departure from classical reinforcement learning and most
evolutionary strategies tasks which typically employ short episodic



2 Eco-evolutionary feedbacks and niche construction in multi-agent environments 75

training where the environment is regularly reset to an initial condi-
tion, preventing persisting changes and therefore feedback loop ef-
fects. Eco-evolutionary feedback loops can, in theory, from the non-
stationarity they induce, lead to never-ending increases in complexity
and diversity of the system (i.e. open-ended dynamics).

Common pool resources

Resource that is available to everyone (in the
sense that it is hard to exclude people from us-
ing it) and where agents must collectively act to
maintain it [298].

Collective niche construction often faces the challenge of common
pool resources (CPR) dilemma. In CPR scenarios [298, 299], a resource
is available to everyone (in the sense that it is hard to exclude people
from using it) and agents must collectively act to maintain it and in
particular not overconsume it. For instance, fishing in a lake presents
a common-pool resource (CPR) challenge: while everyone has the
right to fish, overfishing can lead to the depletion and potential col-
lapse of the resource for the entire population. CPR environments
are particularly interesting as a testbed to study eco-evolutionary
feedback effects as agent consumption of the resource and their in-
volvement in the maintenance of it directly affect the pressures and
opportunities in the environment.

The CPR scenario is also inherently well suited to study the emer-
gence of cooperation. However, this setting also involves a tension
between collaborative management and individual incentives to max-
imize personal gain. In particular, CPR might be very prone to ”free-
riders” taking advantage of the good without participating in its main-
tenance, potentially leading to a ”tragedy of the commons” [299] where
the resource is depleted or is deteriorated due to agents greedily con-
suming it without maintaining it (e.g. overfishing). Additionally, the
presence of CPR (i.e. a common resource to share) can lead to com-
petition between groups, potentially escalating into an ”arms race”
to ”fight” for this resource. This arms race can also contribute to the
overall increase in complexity of the agents and the environment [215,
216]. We refer to Sec.2.1.2 for information on previous works exploring
in silico experiments of CPR social dilemma.

CPR environments vary significantly in their maintenance requirements.
Some only require agents to limit their consumption rate so the re-
source can regenerate, while others require a series of (collective)
actions to be maintained. Furthermore, the potential benefits may
scale with management sophistication: simple conservation strate-
gies might yield modest returns, while advanced ecological engineer-
ing could unlock substantially greater resources.

The first section of this chapter examines a simple CPR setup where re-
source dynamics require only basic management skills to thrive. This
allows us to focus on fundamental eco-evolutionary dynamics. Using
a biologically plausible neuroevolution approach, we simulate hun-
dreds of agents interacting within a large CPR environment for an ex-
tended period of time. Despite the environment’s apparent simplicity,
the combination of eco-evolutionary feedback and multi-agent inter-
actions generates remarkably complex behavioral dynamics.

In the second section, we will then focus on CPR environments de-
manding a more sophisticated level of maintenance to study how
agents collectively learn to eco-engineer their own environment ad-
vantageously. Using the emergence of agriculture as our primary case
study, we design an environment where plants compete for resources



2 Eco-evolutionary feedbacks and niche construction in multi-agent environments 76

and agents can actively intervene to promote the growth of preferred
species. This setup represents a more complex CPR scenario com-
pared to the first section, as it requires agents to develop and execute
multi-step interventions rather than simply managing consumption
rates. This setup allows us to examine the environmental and agent-
based conditions that favor the development of ecological engineer-
ing skills, while also analyzing their impact on population dynamics
and social organization.
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2.1 Eco-evolutionary Dynamics of Non-episodic Neuroevolution in
Large Multi-agent Environments

Context
This contribution was done at FLOWERS in collaboration with Eleni Nisioti, previously postdoc in the
team.

▶ Hamon⋆, G., Nisioti⋆, E., Moulin-Frier, C. (2023, July). Eco-evolutionary dynamics of non-episodic
neuroevolution in large multi-agent environments. In Proceedings of the Companion Confer-
ence on Genetic and Evolutionary Computation (pp. 143-146).
Paper, Code

I am co-first author of this article (Main contributor for experimental design, coding; data analysis
and writing with Eleni).

A companion website associated with the publication, with videos, is also available at https://
sites.google.com/view/non-episodic-neuroevolution-in/
This publication also led to the Master internship of Timothé Boulet to explore further this topic,
as well as a collaboration with Max Taylor-Davies (School of Informatics, University of Edinburgh,
Edinburgh, Scotland) that led to another paper (long oral at the International Conference on the
Applications of Evolutionary Computation – evoApps – 2025) exploring the emergence of altruistic
behavior akin to kin selection , more details in Sec.4.1.

Abstract

Neuroevolution (NE) has recently proven a competitive alternative to learning by gradient descent
in reinforcement learning tasks. However, the majority of NE methods and associated simulation
environments differ crucially from biological evolution: the environment is reset to initial conditions
at the end of each generation, whereas natural environments are continuously modified by their
inhabitants; agents reproduce based on their ability to maximize rewards within a population, while
biological organisms reproduce and die based on internal physiological variables that depend on
their resource consumption; simulation environments are primarily single-agent while the biological
world is inherently multi-agent and evolves alongside the population. In this work, we present a
method for continuously evolving adaptive agents without any environment or population reset. The
environment is a large grid world with complex spatiotemporal resource generation, containing many
agents that are each controlled by an evolvable recurrent neural network and locally reproduce based
on their internal physiology. The entire system is implemented in JAX, allowing very fast simulation
on a GPU. We show that NE can operate in an ecologically-valid non-episodic multi-agent setting,
finding sustainable collective foraging strategies in the presence of a complex interplay between
ecological and evolutionary dynamics.

https://arxiv.org/abs/2302.09334
https://github.com/flowersteam/EcoEvoJax
https://sites.google.com/view/non-episodic-neuroevolution-in/
https://sites.google.com/view/non-episodic-neuroevolution-in/
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Natural environment : Large scale simulation of common pool resources problem with evolving agents

40
0 

Pi
xe

ls

200 Pixels

x=0

x=1

Local resource
growth

A resource appears with a
probability that depends on its

number of neighbors and
latitude x

Local reproduction
and death

Based on its energy level an
agent may die or produce an

offspring with random mutations
on its current location

Agent Resource

Agents see
resources and
other agents

in their
field of view

Observation

Agent architecture Action

Evolvable parameters 

Latitude-
dependent
regrowth

rate

Low

High

x

7 Pixels

Figure 2.3: Our simulation environment (Left) is an extension of the Common Pool Resource (CPR) environment [300, 301] : a two-dimensional
grid-world where some cells contain resources (in green) that the agents (in black) can collect. Resources grow depending on the presence of
other resources around them (local growth, Middle) with an additional very sparse spontaneous growth, which means that over-consumption
may lead to their local depletion. We introduce a latitudinal model of resource regrowth similar to [302] with higher resource regrowth rate in
lower latitudes (bottom of the map) than in higher ones. We consider a very large environment of 200 × 400 pixel that can contain thousands
of agents (in black). We prevent any environment and population reset during a whole simulation of 1.000.000 time steps, enabling continual
eco-evolutionary dynamics to take place. Each agent may reproduce or die according to a physiological model modulating its energy level
as a function of life time and resource consumption (Top-Right). Agents reproduce according to a minimal criterion [303] of maintaining
energy level above a certain threshold for a certain period of time. The population size therefore varies during the simulation according to
the current amount of available resources and the current ability of agents to collect them. Each agent is controlled by a recurrent artificial
neural network which takes as input limited local observations and outputs the navigation action (Bottom-Right). Evolution occurs through
the mutation of a parent’s network weights when it produces an offspring. We refer to section.2.1.3 for more details on the environment design.

2.1.1 Introduction

The main objective of this contribution is to propose a method for
studying large-scale eco-evolutionary dynamics in agent-based sim-
ulations with a reasonable level of biological and ecological plausibil-
ity. For this aim, we implement a system with the following properties
(see Fig. 2.3 for illustration).

Non-episodic simulation environmentwith complex intrinsic dynam-
ics . We model our environment after common-pool resource (CPR)
appropriation problems, where a group of agents competes for fi-
nite resources. We extend an existing environment of CPR appropri-
ation [300] with the presence of multiple niches, where resources re-
grow proportionally to the density of nearby resources at different
rates in different regions of the environment (Fig 2.3). We prevent
any environment or population reset during a whole simulation run,
enabling coupled environmental and population dynamics leading to
complex eco-evolutionary feedback effects.

Continuous neuroevolution in a large, size-varying agent popula-
tion The environment contains thousands of agents, each controlled
by a neural network whose weights are optimized using neuroevo-
lution [304]. Each network contains a memory component (LSTM),
which enables adaptation within the agent’s lifetime in the absence
of weight updates. Thus the evolutionary process can be viewed as



2 Eco-evolutionary feedbacks and niche construction in multi-agent environments 79

an outer loop that optimizes the ability of agents to adapt to different
environmental conditions.

Physiology-driven death and reproduction There is no notion of re-
wards, agents are instead equipped with a physiological system mod-
ulating their energy level according to the resources they consume,
in a non-linear way. At the evolutionary scale, agents reproduce as
long as they are able to maintain their energy level within a reason-
able range and die if this level goes below a minimum threshold. This
is departure from the notion of fitness-based selection and more in
line with a minimal criterion selection [303]. Note that the population
size can vary with time.

Natural vs. Lab environments: Evaluation methodology As we are
interested in the system’s ability to emerge interesting behaviors that
hint to open-ended dynamics, evaluating it on pre-defined set of
tasks would defeat our purpose. For this reason we have structured
our simulation methodology as follows: we let the population of
agents evolve for a long time in a single environment and study its
behavior at a large global scale and at a smaller local scale. At the
large scale, we study the dynamics of the system in what we call
the ”natural environment”, i.e. the full simulation run, by monitor-
ing population-wide and terrain-wide metrics. At the small scale, we
first focus on local, interesting patterns of behaviors observed in the
natural environment, such as individual agents that move in a con-
sistent way or collective immigration and foraging patterns. We then
form specific hypotheses about the potential drives of these behav-
iors and evaluate selected agents in specific ”lab environments” that
enable testing these hypotheses. These environments differ from the
one used for evolving behaviors: they are much smaller and exhibit
vastly different population and resource dynamics (we illustrate ex-
amples of such environments in Figure 2.4.E).

From the perspective of neuroevolution, our empirical study aims at
answering the following questions: a) can we realistically apply neu-
roevolution in multi-agent environments with thousands of agents?
b) does a selection mechanism that allows agents to reproduce lo-
cally, without requiring generational resets, based on a minimal cri-
terion suffice? c) does evolving networks in a multi-agent setting lead
to the emergence of adaptation mechanisms? From the perspective
of multi-agent cooperation, our study targets the questions: a) can we
simulate systems with complex eco-evo dynamics where populations
solving a CPR problem exhibit realistic behaviors? b) does evolving
under a minimal criterion enable sustainability? In the next section,
we answer these questions in the affirmative.

Leveraging the GPU parallelization allowed by the JAX programming
framework [289], we run large-scale continual simulations in grid-
world environments with approximately 100𝐾 cells and thousands of
agents (notably, a simulation of 1𝑀 time steps with such a population
requires about only 20 minutes).
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2.1.2 Background

Neuroevolution

Neuroevolution draws inspiration from natural evolution to create
agents that learn to adapt through an evolutionary process rather
than gradient-based optimization [304]. In a surprise to many, this
simple process of selection and random mutations has recently per-
formed competitively with the state-of-the-art in RL for playing Atari
games [99, 102], and proven powerful in applications such as architec-
ture search, where the non-differentiable nature of the search space
prohibits gradient-based methods [100] and meta-learning, where
the evolutionary process is conceived as an outer optimization loop
that controls the intra-life learning plasticity of agents [305]. Multi-
agent environments, which are particularly promising for neuroevo-
lution as they naturally entail the concept of a population, have been
identified as a frontier for this family of methods [306], arguably due
to their computational complexity and challenging multi-agent learn-
ing dynamics .

Neuroevolution methods are classically performance-driven: solu-
tions are selected based on their ability to solve a pre-determined
task. Complexity-driven approaches, on the other hand, where solu-
tions are chosen based on criteria not directly related to performance,
such as novelty, have proven powerful in tasks for which the objective
function is unknown to humans [307]. For a given criterion, neuroevo-
lution methods can also differ on whether solutions survive only if
they are ranked high within the population (survival of the fittest) or
if their fitness is above a threshold (minimum criterion). The latter
category is the least explored [303], but has the potential of preserv-
ing a larger phenotypic diversity within the population and is believed
to be closer to biological evolution.

Finally, neuroevolution methods almost exclusively consider discrete,
overlapping generations, at the beginning of which solutions experi-
ence mutation and selection simultaneously and the environment is
reset to its initial conditions. We refer to this paradigm as episodic,
borrowing terminology from RL, where recently it has been proposed
to remove environmental resets, as they may introduce the need for
human supervision [308] and are implausible from a biological per-
spective [212]. This setting, termed as non-episodic or continuous
in RL, is harder to envision in evolution under survival-of-the-fittest,
where dividing time into non-overlapping generations ensures that
agents compete based on the same time budget.

Common-pool resource appropriation

CPR tasks abide in natural and human ecosystems: fisheries, grazing
pastures and irrigation systems are examples of multi-agent systems
where self-interested agents need to reach a sustainable resource ap-
propriation strategy that does not exploit the finite resources. They
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belong to a class of game-theoretic tasks termed as social dilem-
mas, which exhibit a tension between individual and collective mo-
tives: the optimal collective strategy is to forage sustainably but self-
interested agents will cooperate only if others cooperate as well; oth-
erwise they will consume resources until they deplete them, a sit-
uation called Tragedy of the Commons [299]. Ecological properties
of these complex systems, such as the spatiotemporal variability of
resources and organisms are believed to play a big part in shaping so-
lutions to CPR problems [309]. From an ecological perspective, such
settings give rise to scramble competition, where organisms of the
same species appropriate resources at a rate contingent on their for-
aging ability, often leading to population bursts and crashes [310].

With recent advances in RL, computational studies of social dilemmas
have managed to operate in simulation environments resembling the
ones used in human lab studies, where agents can navigate a grid-
world consuming resources [300, 301]. RL agents embody the self-
interested trial-and-error learning paradigm and have confirmed our
intuition that, when acting in a group, they cannot avoid a Tragedy
of the Commons unless they employ some auxiliary mechanism for
guarding against exploiters, such as learning to incur punishment
[300] and reputation mechanisms [311]. These studies, however, re-
main far from approaching the complexity of real ecosystems, which
may comprise thousands of organisms that do not necessarily follow
the reward-maximization paradigm.

2.1.3 Methods

The environment

Our simulation environment is an extension of the CPR environment
[300, 301] that the AI community has been using to study the emer-
gence of cooperation in groups of self-interested agents: a two-dimensional
grid-world where some cells contain resources (in green) that the
agents (in red) can collect. Resources grow depending on the pres-
ence of other resources around them, which means that there is a
positive feedback loop, with reduction in resources leading to further
reductions. In addition to resources, the environment may contain
walls (in blue) that kill agents trying to traverse them (see Figure 2.3
for an illustration of our environment).

At each time step 𝑡 of the simulation a resource may grow in a pixel in
a cell of the environment with location (𝑥, 𝑦) based on the following
three processes:

▶ a neighborhood-dependent probability 𝑝𝐼 (𝑥, 𝑦) determines the
probability of regrowth in a cell based on the number of re-
sources in its neighborhood, 𝐼

▶ a niche-dependent scaling factor 𝑐(𝑥) is used to scale 𝑝𝐼 . We em-
ploy a latitudinal niching model used in previous studies [302,
312]: the world is divided into 𝑁 niches, each one having the
form of a horizontal stripe of pixels so that a cell’s location de-
pends only on its vertical position 𝑥 . We refer to 𝑐(𝑥) as the
climate value of niche 𝑥 .
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▶ independently of its neighbors and niche, a resource grows with
a constant low probability 𝑐

By modeling resource generation in this way we ensure that the re-
source distribution follows the CPR model, that it exhibits additional
spatio-temporal variability due to the presence of niches and that
resources do not disappear too easily, which can be problematic in
reset-free environments. Thus, the combined regrowth rate for a re-
source 𝑟 is:

𝑝(𝑥, 𝑦) = 𝑝𝐼 (𝑥, 𝑦) ⋅ 𝑐(𝑥) + 𝑐 (2.1)

A niche’s climate value is determined by equation: 𝑐(𝑥) = (𝛼𝑥 +1)/(𝛼 +
1), which returns values from 0 to 1 and allows us to control the re-
lationship between niche location and climate to be from linear to
exponential.

The agents

At each time step there is a variable number of agents 𝐾𝑡 in the envi-
ronment, each one characterized by its sensorimotor ability, cognitive
capacity and physiology.

Sensorimotor ability An agent observes pixel values at each time
step within its visual range (a square of size [𝑤𝑜 , 𝑤𝑜] centered around
the agent, as illustrated in Figure 2.3]). The pixel values contain infor-
mation about the resources, other agents (including their number)
and walls. At each time step an agent can choose to stay inactive or
execute an action to navigate up, down, right or left.

Cognitive capacity An agent is equipped with an artificial neural
network that outputs the action to undertake based on the current
observation and whose weights are initialized randomly once at the
start of the simulation. Its architecture (illustrated in Figure 2.3) is
minimal: a convolutional neural network, an LSTM cell that equips the
agents with memory by enabling policies conditioned on a trajectory
of observatories and a linear layer that transforms hidden states to
actions.

Physiology An agent is equipped with a simple physiological model
modulating its level of energy: the agent is born with an initial energy
value 𝐸0 which, at every time step, experiences a linear decrease, and,
if the agent consumes a resource, is increased by one (see Figure 2.3
for an illustrative example of how the energy level may change within
the lifetime of a hypothetical agent). The energy is also clipped to a
max value 𝐸𝑚𝑎𝑥 .
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Non-episodic neuroevolution

In neuroevolution (NE) a population of neural networks adapts its
weights through random mutations and a selection mechanism that
promotes well-performing policies. Under a classical NE paradigm
training time is divided into generations, at the end of which agents
reproduce to form the next generation [99, 304].

Our proposed system deviates from this paradigm in two respects:

▶ agents do not reproduce according to their fitness but according
to a minimal criterion on their energy level;

▶ evolution is non-episodic: upon satisfying certain criteria an
agent reproduces locally (the off-spring appears on the same
cell as its parent), so that agents are added in an online fashion
to the population, removing the need for a concept of genera-
tion.

Reproduction In order to reproduce an agent needs to maintain
its energy level above a threshold 𝐸min for at least 𝑇repr time steps.
Once this happens the agent produces an off-spring and is a candi-
date for reproduction again. Thus, agents may have a variable num-
ber of off-spring and do not die upon reproduction. We illustrate
this relationship between energy level and reproduction in Figure 2.3.
Reproduction is asexual: an agent’s weights are mutated by adding
noise sampled from 𝒩 (0, 𝜎)

Death An agent dies once its energy level has been below a thresh-
old 𝐸min for at least 𝑇death time-steps or if its age is bigger than a
certain value 𝐿max. Once this happens, the agent is removed from
the population forever.

Evaluation methodology

The classical performance-driven evaluation paradigm in machine
learning separates an experiment into two distinct phases: during
a training phase the agents learn a policy and during an evaluation
phase the agents act without learning in pre-determined tasks. In RL,
these tasks were traditionally identical to the ones used in training,
as RL agents were too brittle to generalize to unseen conditions [313].
Recent advances in meta-learning have enabled evaluation in a wide
diversity of tasks, but require extensive training [184].

Evaluation in a complexity-driven paradigm is howevermore nuanced:
as we are interested in the system’s ability to emerge interesting
behaviors that hint to open-ended dynamics, evaluating it on pre-
defined set of tasks would defeat our purpose. For this reason we
have structured our simulation methodology as follows: we let the
population of agents evolve for a long time in a single environment
and then study its behavior at a large scale, by monitoring population-
wide and terrain-wide metrics and at a small scale, by focusing on
local, interesting patterns of behaviors such as individual agents that
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move in a consistent way or collective immigration and foraging pat-
terns. We then form specific hypotheses about the potential drives of
these behaviors and design environments that enable testing these
hypotheses. These environments differ from the one used for learn-
ing behaviors: they are much smaller and exhibit vastly different pop-
ulation and resource dynamics (we illustrate examples of such envi-
ronments on the right of Figure 2.3). This evaluation methodology
should strike as familiar to the ALife and ecology communities and,
we anticipate, will become more prevalent in AI studying open-ended
skill acquisition. Borrowing terminology from ecology, we henceforth
refer to the large-scale environment as a natural environment and the
small-scale ones used for hypothesis-testing as lab environments.

2.1.4 Results
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Figure 2.4: A) 1) Amount of resources in the environ-
ment over time and 2) zoom on a smaller timescale
showing the interplay with population size (blue)
B) Percentage of individuals with different amount
of movement over time C) Greediness of a sustain-
able forager agent across evaluation environments
that differ in the amount of resources. D) Average
efficiency across the population in high resources
task with reproduction activated and deactivated.
Activating reproduction leads to increased resource
consumption.

We will now study the evolution of a population in our proposed sys-
tem and probe certain quantities during evolution. Note that this
system required some tuning of the hyperparameters in order to find
a stable environment, as exponential growth of both food and popu-
lation can easily lead to collapse (and even did after several genera-
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tions in 3 out of the 5 seeds launched). We will make a detailed anal-
ysis of one seed and refer to Appendix A.3.3 for an analysis of another
one with a different eco-evolutionary path. We provide videos that
show the real-time behavior of our system in a companion website
(https://sites.google.com/view/non-episodic-neuroevolution-in/)
as well as a repository containing code for reproducing our experi-
ments (https://github.com/flowersteam/EcoEvoJax).
Details on the environment and hyperparameters characterizing the
natural environment can be found in Appendix.A.3.1 and an explana-
tion of how the metrics have been implemented and how statistical
significance was tested for in Appendix A.3.2.

Eco-evolutionary dynamics

In this simulation, the evolution of the population is deeply inter-
connected with the evolution of resources. In Fig 2.4.A.2, we observe
that at a small scale the population size (blue) and resources (green)
present in the environment follow a predator-prey Lokta-Volterra dy-
namic [314]. These oscillations are interesting from an evolutionary
perspective: easier phases with higher resources availability, in which
the population grows and where diversity can emerge, are followed
by high competition phases due to an increase in population and de-
crease in resources.

Coexistence of agents with different movement dynamics At the be-
ginning of evolution (steps 0−200𝐾 , starting with random agents), the
environment has abundant resources which leads to to high-moving
behaviors as an easy first strategy in this high-resource environment
(Fig 2.4.A,B). Then, when the amount of resource decreases, we ob-
serve an increase in the number of low-moving individuals (Fig 2.4.A,B)
exploiting local resource spots (from step 200𝐾 ). From this point,
those two extreme strategies coexist in the agent population (Fig 2.4.B).
This differs from previous related work in a similar environment [315],
relying on a simpler agent architecture and a fitness-based repro-
duction condition, where only one strategy ended up populating the
whole environment. Those extreme behaviors correspond to two dis-
tinct types of agents: high movement individuals are agents that have
an ”opportunistic traveler” strategy as they travel mostly in straight
line but opportunistically exploit resource spots locally (especially
from isolated resources from the sparse spontaneous growth) as soon
as they see them. On the other hand, the low movement individuals
exploit the spreading of resources by staying at the same interesting
place (with resources around) and waiting for resources to spread. We
qualify this waiting of resources as a sustainable strategy as agents
do not consume resources greedily but rather keep these resources
as a reliable source of respawn for more long-term survival (for them-
selves but also for their offspring that will inherit this place). We refer
to video 1.a of the companion website for a visualization of these be-
haviors and to the next subsection for a more detailed and controlled
analysis of the behavior (and diversity) of agents.

https://sites.google.com/view/non-episodic-neuroevolution-in/
https://github.com/flowersteam/EcoEvoJax
https://sites.google.com/view/non-episodic-neuroevolution-in/


2 Eco-evolutionary feedbacks and niche construction in multi-agent environments 86

Evaluation in lab environments

How do the agents adapt their foraging behavior at an evolutionary
and intra-life timescale to maximize their reproduction rate? In the
natural environment, we saw that both population size and the spon-
taneous regrowth of resources may contribute to avoiding resource
depletion. At an evolutionary scale, the population may adapt by
regulating its size and updating its weights. But is it possible that
the agents learned to adapt to different conditions they encounter in
their lifetime in order to forage both efficiently and sustainably? This
is the question the following simulations in the lab environments aim
to address.

Does the density of resources affect agents’ greediness?

Set-up There are three lab environments, with a single agent that
cannot reproduce and resource regeneration deactivated, that differ
in the amount of initial resources (see on Figure 2.4.E for an illustra-
tion of the low and high resources environments). In each of these
lab environment, wemeasure the amount of greediness 𝐺, by dividing
the simulation into non-overlapping fixed windows of 20 timesteps
and checking in which of these windows the agent has at least one
resource in its field of view (let’s denote this number with 𝑇𝑟 ) and the
number of these windows during which the agent consumed at least
one resource (let’s denote this number with 𝐶𝑟 ), so that 𝐺 = 𝐶𝑟/𝑇𝑟 .
We compute this measure on randomly sampled evolved agents from
the end of the natural environment simulation. To quantify the effect
of the density of resources we perform statistical tests comparing the
greediness of each agent in the three tasks. More information can be
found in Appendix A.3.2.

Our analysis showed that agents exhibit different qualitative behav-
iors that can be grouped in two types: a) agents for which no statisti-
cally significant differences appear between tasks. These agents cor-
respond to the opportunistic travelers that we encountered in the nat-
ural environment and do not exhibit resource-dependent adaptation
b) agents for which there are statistically significant differences be-
tween the low-resources and high-resources environment, with greed-
iness in low-resource environments being higher. Overall, 9 out of
the 50 agents exhibited this behavior (we illustrate greediness across
tasks for one of these agents in Figure 2.4.C), which we refer to as sus-
tainable foragers. These agents have learned to not over-consume
resources when these are abundant, but stay close to them to con-
sume them later and take advantage of the higher spread rate. On the
other hand, low resources environment means slower spread (and
may mean lattitude with lower regrow) which might exlain why even
those sustainable agent prefer to take the resource and leave.

Does peer-pressure lead to greediness?
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Set-up We use the high resources task but now allow agents to re-
produce. This means that, after 𝑇𝑟𝑒𝑝𝑟 = 20 timesteps, new agents will
appear, leading to competition for resources. Our hypothesis is that
this will make agents more greedy. To test this, we measure efficiency
𝐸 as the average amount of resources every individual consumes dur-
ing the evaluation trial and average it across 50 agents and 10 tri-
als. We then compare the difference in performance between the
previous set-up (no-reproduction) with the current one, where we av-
erage across 50 agents and 10 trials to observe whether there is a
population-wide effect.

As Figure 2.4.D illustrates, we observed a large change in the forag-
ing efficiency of the agents when reproduction was on. Efficiency
increased by a statistically significant amount, which indicates the
sustainable foragers increased their greediness under peer pressure.
However, we observed that, after an initial increase in resource con-
sumption at the appearance of new agents, the group slows down
again and its members tend to disperse and stay close to resources
without consuming them (see companion website.B.1 for an illustra-
tion of this behavior).

2.1.5 Discussion

Our empirical study demonstrates that neuroevolution can operate
in large multi-agent environments, lead to efficient behaviors even in
the absence of episodic survival-of-the-fittest and help evolve agents
that exhibit adaptation within their lifetime without requiring weight
updates. Specifically in regard to the latter, we identified agents that
change their policy depending on resource density and the presence
of other agents. From an ecological perspective, our computational
study proves that agents selected based on a minimal criterion learn
sustainable behaviors and that the population exhibits dynamics that
resemble those of natural populations, such as population size oscil-
lations. We observed many interesting emerging examples of collec-
tive and individual adaptation, including:

i) Population size exhibits bursts and crashes that are correlated
with the density of resources,

ii) The system goes through phases related to the sustainability
of the agents’ foraging behavior: resources and population size
initially grow until over-population leads to near-extinction of
resources which creates a drive for agents to forage sustainably,

iii) The sustainable population exhibits diversity in individual be-
haviors: some agents specialize in long-distance travel, oppor-
tunistically consuming resources they find on their way, while
others forage locally, staying close to resources to take advan-
tage of the spread of resources and consuming sporadically to
avoid death,

iv) Agents’ influence each others behavior: agents that forage sus-
tainably when alone, temporarily increase their consumption
when others enter their field of view and then revert back to
consuming less.

https://sites.google.com/view/non-episodic-neuroevolution-in/
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Interestingly, points i) and ii) above could not be observed in a stan-
dard episodic training paradigm, where environment and population
resets would prevent any eco-evolutionary feedback. In this respect,
we are considering future experiments studying whether continual lo-
cal reproduction, where offsprings are produced next to their parent,
did enable some sort of kin selection –e.g. in the form of reducing
parent’s greediness as a way to favor the survival of their offsprings.
Other future work could also focus on studying to what extent the
memory component of the agent’s cognitive architecture contributes
to intra-life adaptation.

In the past, ecologists have hinted at the limitations of an anthro-
pocentric view on intelligence [316]: if we search for intelligence by
looking at performance metrics only in tasks that we excel at, then
we will inevitably miss a big part of the natural kingdom. Our study
hints at a similar conclusion for artificial agents: evolving agents in
natural environments with complex spatiotemporal dynamics in the
absence of rewards and examining their behavior in toy lab environ-
ments may bring us closer to our quest for open-end behavior in
artificial systems.



2 Eco-evolutionary feedbacks and niche construction in multi-agent environments 89

2.2 Discovering agriculture through
multi-agent reinforcement learning

Context
This contribution is the result of a collaboration with Ricard Solé
(Complex system lab, Universitat Pompeu Fabra, Barcelona, Spain)
andMartí Sànchez-Fibla (CSIC, Universitat Pomepu Fabra, Barcelona,
Spain). In particular I did a 3 months visit in the Complex system
lab in Barcelona in 2024.

This work is still a work in progress and the results of this section
are still preliminary.

The discovery of agriculture is often seen as a major behavioral tran-
sition in the human species, paving the way toward modern techno-
logical development, increase in population size, and large-scale so-
cial organization [317]. However, the human species is not the only
one having discovered agricultural practices: it is also the case of
some ant species, e.g. fungus farming [318]. Insect fungiculture and
human farming share common fundamental traits that are character-
istic of advanced forms of agriculture [319]: a) Frequent seed planting,
b) Dedicated cultivation of the crop in different forms: soil fertiliza-
tion, protection against herbivores/fungivores, parasites, or diseases,
c) organized harvesting of the crop, d) mutual nutritional dependency
on the crop.

In this contribution, we study the environmental and cognitive factors
promoting the emergence of agricultural practices in populations of
artificial agents. We consider a simulated grid world with three plant
species that compete with each other, with plant growth influenced
by the presence of a fertilizer. We place a population of reinforce-
ment learning agents in this environment, which are rewarded differ-
ently when they consume one plant species or the other. We exper-
imentally control both cognitive factors (e.g. reward discount factor
and exploration bias) and environmental factors (e.g. plant growth
and inter-plant competition parameters) in different simulation con-
ditions. We analyze the effect of these factors on the ability of agents
to discover agricultural practices in a multi-agent setting. We find
that under the assumptions of our model, the discovery of agricul-
ture is favored by 1) a cognitive architecture favoring exploration and
long-term returns and 2) the scarcity of naturally grown resources.
We then explore in more detail the collective behavior of the agents
that learned agricultural practices, for instance showing division of
labor.

2.2.1 Simulation details

Environment dynamics. The environment is a gridworld with 3 types
of plants:

▶ A ”yellow plant” beneficial to the agents. This plant propagates
through seed propagation (see below).
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▶ A ”green plant” competing with the yellow plant and useless for
the agents. This plant also propagates through seed propaga-
tion.

▶ A ”purple plant” that is beneficial to the agent, but does not
spread and rather grow spontaneously (the reason for this dif-
ference is given below).

The plants follow seasonal cycles where plants grow during a ”sum-
mer” season and die at the beginning of a ”winter” season as depicted
in Fig.2.5.A . More precisely:

▶ Seed spreading. Yellow and Green plants grow during the ”sum-
mer season”. A few steps before the end of the season, they
spread seeds to the neighboring cells. At the beginning of the
”winter season”, the plants die and only seeds remain. At the
beginning of the following summer season seeds have a prob-
ability to germinate to begin a new plant cycle. The probability
of a seed to germinate depends on the number of seeds on this
cells, including seeds of the other color plants.
In fact, yellow and green plants are in competition, with an
small advantage toward green plants (Fig.2.5.A). This allows to
test the ability of the agents to eco-engineer the environment
to favor the yellow plant growth by altering its competitor.
Seeds that did not sprout at the beginning of a new season stay
in the grid to sprout later but have a probability to disappear.
These two plants induce a Common Pool Resource (CPR) appro-
priation scenario (Sec.2.1.2). In particular, as depicted in fig.2.5.C-
D, without any maintenance from the agents, the yellow plant
slowly decays in the grid over the episode until nearly disap-
pearing. The agents can also overconsume it, accelerating this
decay.
Therefore, tomaximally benefit from the yellow plant, the agents
have to not overconsume it but can also favor its spread through
different actions.
The CPR nature of the system also expose the group of agents to
free-riders – agents taking advantage of the resources without
participating in their maintenance.

▶ Spontaneous growth. Purple plants have a probability 𝑝𝑠𝑝𝑜𝑛𝑡
to appear spontenously on a cell at each timestep during the
”summer season”. The purple plants disappear during the win-
ter season.
The dynamic of the purple plant differs from the two others as
it relies on spontaneous grow (instead of seed spread). The rea-
son of this design choice is to introduce a simple purple-plant
foraging strategy that can be exploited by the RL agents. Indeed,
the purple plant does not require any maintenance but spawns
randomly at a rate 𝑝𝑠𝑝𝑜𝑛𝑡 . With this parameter we can therefore
experimentally control the gap in returns between foraging and
agricultural strategies and study how environmental and cogni-
tive factors favor one or the other.

An episode consists of several seasonal cycles. In the following ex-
periments, the period of the seasons is 40 (half summer half winter)
with a total number of timesteps of 1024, i.e. more than 25 seasons.
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The environment also contains sources of water (blue in Fig.2.5.D) that
the agent can use to water the soil. Water acts as a fertilizer: plants
that are in the 3x3 neighbourhood of a watered cell give more re-
ward when harvested. Water on soil evaporates and, therefore, has a
probability at each timestep to disappear. Agents, therefore, have an
interest in constantly bringing new water to the soil.

We provide in the appendix.A.4.1 more details on the dynamics of the
environment.

Agents dynamics. The simulations are conducted in a multi-agent
scenario with 4 agents in the grid. The agents possess an inven-
tory that allows them to carry seeds and water (without limit in the
amount).

Each agent can execute the following actions:

▶ Movement: up, down, left, right.
▶ Pick (water,yellow seed,green seed). Only one seed can be picked
at a time.

▶ Drop (water,yellow seed, green seed). Only one seed can be
dropped at a time.

▶ Harvest (yellow plant, green plant, purple ”foraging” plant).
▶ Protect action. This action prevents any agent from removing
the yellow plant in a 3x3 local neighbourdhood of the agent
that performed this action (only for the timestep this action is
performed). This type of action was introduced in Perolat et al.
paper on multi-agent RL in a common pool resources problem
[300], where it was necessary to learn a collective sustainable
behavior.

Some of the actions, such as dropping and harvesting, have a small
cost in order to promote ”intelligent” use of them and prevent abuse.
More details in the appendix A.4.2.

Reinforcement learning training. In this work, we use episodic rein-
forcement learning (RL) to efficiently train the agents. However, we
still allow long episodes of 1024 steps to allow for the long-term eco-
engineering of the environment.

In RL, an agent observes an environment and performs actions on it
that incur rewards, aiming at maximizing the rewards it accumulates.
At each time step 𝑡 of an episode that lasts for 𝑇 time steps the agent
(partially) observes the environmental state 𝑠𝑡 , performs action 𝑎𝑡 and
receives reward 𝑟𝑡 . The partial observation of the agent is a function of
the environmental state: 𝑜𝑡 = 𝑜𝑏𝑠(𝑠𝑡 ), for instance corresponding to the
agent’s local neighbourhood. The policy 𝜋(𝑎𝑡 |𝑜𝑡 ), which describes the
agent’s behavior as amapping from agent’s observations to actions, is
interactively learned from experience by maximizing the cumulative
reward 𝐺𝑇 = ∑𝑇

𝑡=0 𝛾 𝑡 𝑟𝑡 , where 𝛾 is a parameter quantifying how heavily
future rewards are discounted [108]. Small 𝛾 results in nearsighted
policies that mainly favor immediate reward while large 𝛾 favors long-
term policies.



2 Eco-evolutionary feedbacks and niche construction in multi-agent environments 93

In this contribution, the training is decentralized: each agent learns
independently using proximal policy optimization (PPO)[320] on its
own history of interactions with the environment. This means that
agents do not have access to other agents’ observations, actions, and
rewards.

To encourage continuous exploration, the PPO objective function in-
corporates an entropy term that nudges the policy distribution to-
ward a more uniform spread over possible actions. This ensures that
all actions remain under consideration, mitigating premature conver-
gence to suboptimal strategies. The influence of this entropy term is
regulated by the parameter 𝜆𝑒𝑛𝑡𝑟 , which effectively adjusts the degree
of exploratory behavior.

Each agent’s action policy is a trainable transformer-based neural
network. It takes as input the history over a time window of: the
agent’s local observation of the environment in a 11 × 11 neighbour-
hood around it, the state of its inventory, and the time of the sea-
son. Based on these inputs, it outputs the actions. We refer to ap-
pendix.A.4.2 for more details on the observation space and architec-
ture of the agents.

We use our open-source code implementation of transformer-based
agents with PPO, more information in Sec.4.3.

2.2.2 Measures

We report in this section the different measures used to track our
simulation dynamics and the emergence of agriculture.

▶ ”yellow grown”measures the total number of yellow plants that
sprouted in the environment. This is measure is useful to track
how much the agents participate in the proliferation of the yel-
low plant.

▶ ”Drop water” measures how much the agents water the soil in
the environment.

▶ ”Seed planted” measures the amount of yellow seeds actively
by planted the agents in the environment.

▶ ”Protect action” measures the number of times agents use the
protect action to protect crops from other agents.

▶ ”Agent neihbourhood”measures the average number of agents
in a close neighbourdhood of each agent. This measures indi-
cates how much agents group together.

▶ ”Movement” measures the average number of cells traveled by
the agents over a time window. This is useful to track how much
the agents move to find resources versus stay at the same place
to potentially eco-engineer.

▶ ”Forage plant eaten” measures the amount of purple plants
consumed by agents.

▶ Sustainability (taken from[300]) measures the average time at
which the agents consume resources. A low value means that
the agents consumemuchmore at the beginning of the episode
(potentially hinting towards over consumption), while a high
value means that the agents consume more at the end of the
episode (hinting towards sustainable behavior).
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Figure 2.6: Heatmap parameter analysis over the spontaneous growth probability of the purple plant 𝑝𝑠𝑝𝑜𝑛𝑡 and the entropy bonus term
(favoring exploration) 𝜆𝑒𝑛𝑡𝑟 . We observe a sharp transition from measures indicating foraging strategies (high 𝑝𝑠𝑝𝑜𝑛𝑡 and low 𝜆𝑒𝑛𝑡𝑟 ; top right part
) to measures indicating agricultural practices (low 𝑝𝑠𝑝𝑜𝑛𝑡 and high 𝜆𝑒𝑛𝑡𝑟 ; bottom left part). Each parameter couple is tested over 3 seeds, we
report the average value. The experiments were performed with 𝛾 = 0.999

▶ ”Isolation yellow” measures how much yellow plants are iso-
lated from the green plants. A high value means that there is
on average very few green plants in the direct 3x3 neighbour-
hood of the yellow plants.

▶ ”yellow eaten” measures the amount of yellow plant eaten by
the agents.

▶ ”green plant removed” measures the number of green plants
that were removed by the agents. This is a proxy for how much
the agents remove the competition from the yellow plant.

▶ ”Episode returns” measures the total reward obtained in aver-
age by agents over an episode.

2.2.3 Preliminary results

What are the roles of environmental and cognitive factors in
favoring the discovery of agriculture?

We report in Fig.2.6 a parameter analysis over:

▶ An environmental parameter: the spontaneous growth proba-
bility 𝑝𝑠𝑝𝑜𝑛𝑡 of the purple plants. The higher this parameter, the
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more abundant the purple plant is in the environment. It there-
fore indirectly controls the potential total return of a strategy
consisting in simply foraging the purple plant. We predict that
low values of 𝑝𝑠𝑝𝑜𝑛𝑡 (i.e. scarcity of the purple plant) should favor
the discovery of an agricultural strategy.

▶ A cognitive parameter: the entropy bonus term in PPO 𝜆𝑒𝑛𝑡𝑟 . This
parameter is a proxy for the incentive of the agent to explore
during learning.

For this analysis, the discount factor 𝛾 is fixed to 0.999. This high
discount factor favors the learning of action policies that take into
account cumulative reward over the long term.

We observe in Fig.2.6 a sharp transition in nearly all measures in the
same region. In particular, the bottom left region, of higher entropy
(exploration) bonus and low spontaneous growth shows measures
indicating the emergence of agriculture. Indeed, we observe in this
region that the amount of yellow plants grown is much higher, that
the agents plant many more seeds, drop much more water, and re-
move many more green competitor plants. We also observe a higher
sustainability metric, less movement, and less ’foraging’ of the pur-
ple plants. The fact that agents move less and eat far fewer foraging
plants indicates that the agents stay at the same place, focusing on
consuming the yellow plants they are helping to grow. We provide in
the following section 2.2.3 a deeper analysis of the behavior of the
agents and the learning dynamic.

Interestingly, agriculture does not emerge across a significant por-
tion of the parameter space, despite offering a much higher total re-
ward (Fig. 2.6). Indeed, the spontaneous growth of the purple plant
has no influence on the environment agricultural potential. Conse-
quently, even in the high 𝑝𝑠𝑝𝑜𝑛𝑡 region of the parameter space, greater
rewards could be achieved by adopting agriculture. However, as 𝑝𝑠𝑝𝑜𝑛𝑡
increases, foraging becomes an increasingly entrenched local opti-
mum, making it even more difficult to transition to agriculture.

We observe similar results with the discount factor 𝛾 – specifying how
much the agent takes into account future rewards in its choice of
action – as shown in Fig.2.7 (See appendix.A.4.3 for the heatmap with
𝛾 ).
From these results, we conclude that, under the assumptions of our
model, the discovery of agriculture is favored by an environmental
and two cognitive factors. First, agriculture is hardly discovered in
environments with an abundant access to foraging resources, even
though it could still yield higher rewards if it were discovered. Our in-
terpretation is that, in such conditions, a foraging strategy constitutes
a strong local optima from which it is then hard to escape. Second,
the discovery of agriculture requires a cognitive ability to make deci-
sions based on long-term predictions of future outcomes and the in-
centive to explore. The importance of gamma is expected as, with low
discount factors, agents are near-sighted while eco-engineering re-
quires an immediate cost (in terms of spending time to eco-engineer
and not consuming the resources) for a future better environment
with rewards.
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Figure 2.7: Parameter analysis of 𝑝𝑠𝑝𝑜𝑛𝑡 and 𝛾 . We ob-
serve a sharp transition in the metrics indicating
agricultural practices as well as the episode returns.
Agriculture only emerges fully for a very high value
of 𝛾 and a low value of 𝑝𝑠𝑝𝑜𝑛𝑡 . Each parameter couple
is tested over 3 seeds, we report the average value.
We can clearly see that the episode return (bottom
right) is much higher with agriculture yet does not
emerge for high value of 𝑝𝑠𝑝𝑜𝑛𝑡 . The experiment were
performed with 𝜆𝑒𝑛𝑡𝑟 = 0.036

In favorable conditions, what is the learning dynamics of an agent
population discovering agriculture?

We now choose parameters favoring the emergence of agriculture in
the previous experiments and study inmore detail the resulting learn-
ing dynamic.

Qualitative analysis of the agriculture behavior. As displayed in Fig.2.5.D,
agents learn to make their ”field” close to the water source, suppos-
edly for two reasons: First, it allows them to get water easily; sec-
ond, the water source allows having one side less of pressure from
the green plant. We also observe (Fig.2.5.D) that the group of agents
effectively learns to make a controlled field of yellow plants clearly
separated from the green plants – mitigating its competitive pressure
on the field.

Learning dynamics. We report along training time, the metrics de-
scribed above (Sec.2.2.2), for one seed of training leading to agricul-
ture (Fig.2.8, 𝛾 = 0.999, 𝜆𝑒𝑛𝑡𝑟 = 0.036, 𝑝𝑠𝑝𝑜𝑛𝑡 = 0.0112). We observe a
progressive steady increase in the yellow plant growth metric, indi-
cating that the agents learn to favor its growth. At the same time,
the amount of ”foraging eaten” decreases, as well as the amount of
movement, indicating that the agents abandon foraging at the same
time. We also observe that the agents start to drop water very early
and then follow a similar increase as the yellow growth metric.

Several other measures have a seemingly correlated dynamic along
training. Following the first phase of the metrics described in the
previous paragraph, we observe at the beginning of learning an in-
crease in the grouping of agents (seen with the metric ”agent neigh-
bourhood”), which seems to correlate with an increase in the use of
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Figure 2.8: Learning dynamics. We report different
metrics (Sec.2.2.2) along training time (x axis), for
a simulation displaying the emergence of agricul-
ture. We observe progressive steady increase in sev-
eral eco-engineering metrics such as the growth of
the yellow plants, and the dropping of water. This
trend is acompanied by a decrease in movement
and consumption of the foraging purple plant indi-
cating agents abandoning foraging. We also observe
a first increase in the grouping of agent (”agent nei-
hbourhood”) correlated with an increase in the use
of the protect action, which then both decrease.

the protect action. Similarly, as the grouping of agents decreases
slightly (potentially as they learn to collectively eco-engineer in a bet-
ter way and cover a larger territory), we also measure a decrease in
the amount of protect action used.

Further works could further explore, through more measures, those
learning dynamics and in particular the several phases we observe.

Specialization and division of labor. We report in figure.2.9 mea-
sures per agent at the end of training for a specific training run (𝛾 =
0.999, 𝜆𝑒𝑛𝑡𝑟 = 0.036, 𝑝𝑠𝑝𝑜𝑛𝑡 = 0.0112).
Interestingly, we observe specialization of the agents and division of
labor: the agent 3 (red bars) is the only one bringing water to the
crops while the agent 1( blue color) is themain contributor to planting
seeds (and protecting) but participates less in removing the green
plants.

Such results highlight the interestingness of multi-agent decentral-
ized training enabling agents to specialize, potentially leading to a
collective division of labor. Division of labor is in fact a central con-
cept across Szathmáry’s framework of Major Transitions [321].

Note however, that most simulations where agriculture emerged did
not have such a clear specialization, most of the time the agents par-
ticipated in mostly all tasks (dropping water, bringing seeds, remov-
ing green plants and potentially protecting the crops from free riders).
Here again, a more thorough analysis will be required.

We refer to appendix.A.4.3 for specialization plots for other environ-
mental and cognitive parameters.
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Figure 2.9: Specialization of agents. We report metrics per individual. Each color corresponds to a different agent. We observe specialization
and division of labor. For example red agents drops water while the blue one plant seed and protect but remove less green plants than the
others. The parameters used are : (𝛾 = 0.999, 𝜆𝑒𝑛𝑡𝑟 = 0.036, 𝑝𝑠𝑝𝑜𝑛𝑡 = 0.0112)

Interestingly, in the region of the parameter space where agriculture
emerges, we observe in Fig.2.9 that every agent participates in the eco-
engineering to some extent. In particular, we don’t observe strong
free-riding behaviors, in the sense that all agents contribute to eco-
engineering activities, either through dropping water, planting seeds,
or removing green plants. Further work could perform ablations (or
parameter analysis) – for example, on the protect action – to explore
the reason for this absence of free-riders.

2.2.4 Conclusion

In this contribution, we introduced an environment to explore the
emergence of agricultural practices in groups of learning agents. We
show in preliminary results that groups of agents trained with decen-
tralized reinforcement learning are able, with the right environmental
and cognitive parameters, to learn cooperative eco-engineering to fa-
vor the growth of a beneficial plant.

Our preliminary parameter analysis reveals that:

▶ Agriculture is hardly discovered in environments with an abun-
dant access to foraging resources, even though agriculture could
still yield higher rewards if it were discovered. Our interpreta-
tion is that, in such conditions, a foraging strategy constitutes a
strong local optima from which it is then hard to escape.
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▶ The discovery of agriculture requires a cognitive ability to make
decisions based on long-term predictions of future outcomes
and the incentive to explore.

This parameter analysis is, however, still limited and would benefit
from testing more values, as well as other parameters. However, such
parameter analysis can become rapidly computationally costly.

This contribution would also benefit from a deeper behavior and learn-
ing dynamic analysis than the preliminary results provided in Sec.2.2.3.
Further work could also analyze in more detail the conditions favoring
the emergence of specialization that our study revealed.

The emergence of agriculture is closely tied to social organization,
particularly population size and growth [322, 323]. While the prelimi-
nary results presented here involve only four agents, future research
could explore larger populations, including dynamically expanding
groups. Promising findings, detailed in Appendix.A.4.3, indicate that
in such environments, sustained population growth can occur with-
out collapse, as new individuals contribute to resource production by
joining the workforce.

Another hypothesis in human behavior ecology is the importance of
storage in the organization of society and the emergence of agricul-
ture [324, 325]. Further work could introduce the need to store re-
sources, for example, during winter, to further test these hypothe-
ses.

2.3 Chapter conclusion Quick summary chapter 2

▶ Large scale experiments showing the im-
portant effects of eco-evolutionary feed-
backs.

▶ Neuroevolution of efficient sustainable
behavior through physiological repro-
duction, without any explicit objective
being maximized.

▶ Different behavioral strategy coexisting,
elicited by isolation and behavioral tests
in ”lab environments”.

▶ Learning of collective eco-engineering
strategies with the emergence of agricul-
ture.

▶ Eliciting the conditions favoring the dis-
covery of agriculture.

In this chapter, we explored the feedback loop effects between adap-
tive agents and the environment, potentially leading to complex en-
vironmental trajectories and agent behaviors.

In the first contribution Section.2.1, we showed the important effects
of eco-evolutionary feedback in large-scale multi-agent experiments
with hundreds of agents despite a simple environmental dynamic.
This work also showed that neuroevolution was capable of evolving
efficient sustainable behavior in this complex scenario through phys-
iological reproduction only, without any explicit objective or fitness
function being maximized.

In particular, we observed the evolution of complex niche construc-
tion, which we explored further in the second section, exploring the
emergence of agriculture, where agents’ actions leveraged the envi-
ronment’s capacities to provide more abundant and sustainable re-
sources.

Our findings in Section.2.1 revealed the emergence of sustainable be-
haviors among agents, which we hypothesize were evolutionarily se-
lected due to their role in enhancing offspring survival over several
generations through resource preservation. Building on these obser-
vations, our subsequent work which we briefly describe in Section.4.1
examines this phenomenon more systematically through dedicated
simulations focusing on the kin selection of feeding behaviors. These
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investigations demonstrated how evolutionary pressures can favor
the development of altruistic behaviors toward offspring.

In addition, the continual nature of our simulations, where agents
coexist with their offspring, also creates conditions conducive to cul-
tural transmission. While several works [150–152] have demonstrated
passive teaching—where learners observe agents performing tasks—
future research could investigate the emergence and kin selection of
active teaching behaviors.

In fact, while we intentionally employed simplified environments to
isolate and analyze eco-evolutionary feedback loops in the first sec-
tion, future work could incorporate additional complexity for more
complex agent-environment co-adaptation. This expansion could oc-
cur along two complementary axes: agent capabilities and environ-
mental dynamics. For agents, the introduction of explicit communi-
cation mechanisms could facilitate the emergence of sophisticated
cooperative behaviors and potential teaching. Environmental com-
plexity could be enhanced by incorporating elements from our agri-
cultural studies (Section.2.2) or introducing compositional dynamics
– the possibility to produce new elements in the environment (such
as tools), or to change the properties of existing ones, by composing
other elements. The latter is particularly promising, as it could drive
the natural emergence of exploration, learning, and teaching behav-
iors through environmental demands. We refer to discussion Sec.5.2.1
for more information on compositional dynamics as an interesting
element of open-ended environments.

Notably, throughout these studies, we employed recurrent neural net-
works as controllers, enabling lifetime adaptation that can be meta-
learned through outer adaptation loops [182–185]. This architecture
theoretically supports the emergence of learning and exploration dur-
ing an agent’s lifetime. Such adaptation can be particularly advan-
tageous in highly variable environments, depending on its temporal
scale and intensity [186]. The next chapter will explore how this envi-
ronmental variability can lead to the emergence of collective explo-
ration and how communication can enhance exploration efficiency.
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In the last chapter, we explored how reciprocal causation between
agents’ behavior and environmental dynamics could result in eco-
evolutionary dynamics (e.g. Lokta-Volterra cycles, Sec.2.1.4) or the
acquisition of collective eco-engineering strategies (e.g. agriculture,
Sec.2.2). We have seen that such phenomena could result in impor-
tant variability in the environment, e.g. in terms of resource availabil-
ity and distribution. In the natural world, even ”stabilization” strate-
gies, like agriculture, often come with new techniques or tools that
appear at a fast pace compared to evolution. These rapid changes re-
quire equally fast adaptation mechanisms, enabling agents to adapt
in shorter timescales than the ones at which biological evolution op-
erates.

The evolution of learning, for instance, is hypothesized to have been
favored in environments that are unpredictable across generations
but sufficiently stable within an individual’s lifetime [160, 326]. This
mechanism exemplifies how an outer slow adaptation loop, evolution,
can give rise to a faster adaptation mechanism: developmental learn-
ing, as a response to environmental variability. In fact, in these vari-
able environments, despite costing time and being potentially risky,
developmental learning seems to have evolved as a way to efficiently
adapt to diverse possible environments whose properties cannot be
predicted at the evolutionary timescale.

In particular, a fundamental aspect of learning is exploration. In hu-
mans, this process is primarily driven by intrinsicmotivation (Sec.0.2.3):
engaging in activities for their own sake rather than for external re-
wards. While intrinsic motivation has been extensively studied in psy-
chology [327–331], its precise mechanisms and evolutionary origins
remain topics of active research. Computational models of intrinsic
motivation have therefore been used both for their usefulness for en-
hancing the exploration capabilities of artificial agents as well as to
help understand the mechanism and origins of intrinsic motivation.

In silico, intrinsic motivation has been introduced in two different
manners.

▶ The first one involves directly implementing it into an artificial
agent’s cognitive architecture to enhance exploratory behavior.
For example, several works propose to add intrinsic bonuses to
the reward function for novel state [136, 137], model prediction
error [138–140] ,surprise [141], (in)competence [142], or empow-
erement (how much the agent can ”change its environment”)
[143]. Another approach consists in enabling agents to generate
their own intrinsic goals and learn how to achieve them, what
is called autotelic agents [144, 145] (see Fig.3.1 and sec.3.2.6 for a
formalization of autotelic agents). We refer to [134] for a general
review of computational models of intrinsic motivations.
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Figure 3.2: Meta-learning. Fig from [169].
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▶ On the other hand, several work have studied how complex ex-
ploration and intrinsic motivation can emerge from the train-
ing itself [171, 332–334]. In fact, similar to how evolutionary pro-
cesses (an ”outer” adaptation loop operating at the timescale
of generations) gave rise to developmental learning (an ”inner”
adaptation loop operating at the timescale of an individual’s
life) in biological systems, computational studies suggest that
learning itself – and in particular exploratory behavior and in-
trinsic motivations – can arise from an outer adaptive process.
This concept is known asmeta-learning (learning to learn, Fig.3.2).
Meta-learning was shown to be a powerful technique, even able
to meta-learn entire learning algorithms [169, 172, 173, 335]. In
reinforcement learning (RL), meta reinforcement learning (meta-
RL) approaches have shown efficacy in variable environments,
allowing agents to generalize and adapt to new settings dynam-
ically through behavioral plasticity and exploration [170]. In par-
ticular, several studies have demonstrated the meta-learning of
powerful exploration strategies [182–185, 333, 334]; as well as the
meta-learning of explicit intrinsic motivations [171, 332]. Many of
these studies underscore the critical role of environmental vari-
ability in promoting the emergence of adaptive strategies, high-
lighting its influence on the development of exploration [184,
186].

TowardsMulti-Agent Systems However, most of these works focused
on single agents environments without interaction with other learn-
ing agents, or used centralized training using copies of the same
agent [184]. This contrasts sharply with natural environments as we
considered in the previous chapter which often assume groups of in-
dependent agents interacting. In fact, interaction between multiple
learning agents can be beneficial to exploration, through the sharing
of diverse experiences allowing to better escape potential local op-
tima [154]. However, multi-agents systems also face the challenge of
the variability due to other agents’ change of behavior, to which the
agent has to adapt [336, 337]. In particular, in environments neces-
sitating cooperation, groups of agents have to potentially align their
intentions to explore more efficiently.

In this chapter, we will study how advanced, generic, potentially col-
lective exploration strategies can emerge in adaptive agents exposed
to high environmental variability.

Emergence of Collective Exploration In a first section, using proce-
durally generated hierarchical tasks, we explore the emergence of
collective exploration in a group of independent agents. From the
training on a diverse distribution of tasks where the underlying rules
have to be discovered, agents meta-learn to collectively explore the
affordances of the environment. The agents also show interesting
generalization to new tasks and longer chains of tasks (with more
objects etc) not seen during training.
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Communication and emergent shared intentionality In a second
contribution, we now assume group of independent agents with a
built-in intrinsic motivation mechanism. We rely on the autotelic
learning paradigm (formalized in Sec. 3.2.4), where each agent is able
to self-generate its own goals and learn how to achieve them using
goal-conditioned RL. We first show that agents independently select-
ing their goals achieve sub-optimal behavior in cooperative environ-
ments. We then show that the alignment of goals is a sufficient con-
dition to efficiently learn optimal cooperative behaviors. Lastly, we
provide a fully decentralized training algorithm, which allows agents
to learn to develop ”shared intentionality” [338], establishing a com-
mon lexicon that enables coordinated goal selection. Notably, the
learning of ”shared intentionality” is done through the agents’ indi-
vidual maximization of reward. This work shows how communication
can reduce uncertainty arising from other agents’, by aligning inten-
tions to promote more efficient exploration.
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3.1 Emergence of Collective Open-Ended Exploration from
Decentralized Meta-Reinforcement Learning

Context
This work is the result of the master internship of Richard Bornemann which I co-supervised.

▶ Bornemann⋆, R., Hamon⋆, G., Nisioti, E., Moulin-Frier, C. (2023) Emergence of collective open-
ended exploration from Decentralized Meta-Reinforcement learning. In Second Agent Learning
in Open-Endedness (ALOE) Workshop at Neurips 2023
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It was presented at the Agent Learning in Open-Endedness (ALOE) Workshop at Neurips 2023.

Abstract
Recent works have proven that intricate cooperative behaviors can emerge in agents trained using
meta reinforcement learning on open-ended task distributions using self-play. While the results
are impressive, we argue that self-play and other centralized training techniques do not accurately
reflect how general collective exploration strategies emerge in the natural world: through decentral-
ized training and over an open-ended distribution of tasks. In this work, we therefore investigate
the emergence of collective exploration strategies, where several agents meta-learn independent
recurrent policies on an open-ended distribution of tasks. To this end, we introduce a novel environ-
ment with an open-ended procedurally generated task space which dynamically combines multiple
subtasks sampled from five diverse task types to form a vast distribution of task trees. We show
that decentralized agents trained in our environment exhibit strong generalization abilities when
confronted with novel objects at test time. Additionally, despite never being forced to cooperate
during training, the agents learn collective exploration strategies which allow them to solve novel
tasks never encountered during training. We further find that the agents’ learned collective explo-
ration strategies extend to an open-ended task setting, allowing them to solve task trees of twice the
depth compared to the ones seen during training.
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3.1.1 Introduction

Cooperative exploration plays a pivotal role in fostering the collective
intelligence in groups of autonomous agents. Developing strategies
to effectively coordinate the exploration of large search spaces has
the potential to significantly decrease the time needed to find opti-
mal solutions. The power of cooperative exploration can be seen in
areas ranging from complex search and rescue missions to the entire
field of modern science, where scientists work together to coordinate
their research. Studying the emergence of cooperative behavior in ar-
tificial agents has therefore garnered much interest, especially in the
field of multi-agent reinforcement learning [339] [340] [341]. With the
recent successes of deep reinforcement learning, the difficulty of the
tasks being researched has significantly increased, leading to a corre-
sponding increase in the complexity of learned cooperative behaviors
[114] [115]. Extending multi-agent reinforcement learning further by
training agents on open-ended task spaces has led to agents which
exhibit strong generalization abilities, being able to adapt to novel
tasks through strong exploration priors acquired during training [44]
[184].

However, these works do not study the simultaneous training of de-
centralized agents, but rather make use of techniques such as self
play or playing against static checkpoints of other agents. We ar-
gue that this approach does not accurately reflect how autonomous
agents learn together in the real world. Rather, when confronted with
novel tasks in a group setting, all autonomous agents in the group are
exploring and actively updating their prior beliefs, forcing them to ei-
ther explicitly or implicitly coordinate their learning progress to con-
verge to some shared strategy which allows them to effectively solve
the task. Recent works such as [300, 342, 343] have shown that this
coordination process can emerge in decentralized multi-agent rein-
forcement learning, leading to independent agents learning to solve
complex tasks together.

In this work we want to further investigate the emergence of cooper-
ative exploration strategies of decentralized agents by training them
on an open-ended distribution of tasks. To this end we introduce
a novel environment which is conceptually simple yet allows for a
complex open-ended procedurally generated task space by dynam-
ically combining multiple subtasks sampled from five task types to
form a task tree which needs to be solved sequentially (Fig. 3.4), akin
to the notion of recipes in [184]. We train two agents parametarized
by independent recurrent neural networks and optimized using stan-
dard proximal policy optimization. As no information is given to the
agents about which subtasks have been sampled or how and in which
order they should be solved, the agents have to develop general
strategies for exploring the environment, effectively learning how to
learn from the information obtained by interacting with the environ-
ment throughout the episode, in order to solve novel tasks. We show
that training independent decentralized agents on only multi-agent
episodes leads to sub-optimal behavior of the agents, primarily due
to the problem of credit assignment when rewards are shared be-
tween agents. We propose to include single-agent episodes during
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training to force the agents to learn to solve tasks on their own with-
out relying on any help from other agents. We find that training on
a mixture of single and multi-agent episodes increases the agents’
individual performance while simultaneously decreasing the individ-
ual performance differences between the agents, leading to a strong
improvement in performance in multi-agent tasks.

Using this approach we find that decentralized agents trained in our
environment learn a powerful collective exploration strategy, allow-
ing them to solve over 70 percent of task trees encountered during
training. Moreover, these powerful exploration capabilities lead to
strong generalization performance when confronted with objects un-
seen during training, as well as on novel tasks which require complex
coordination to be solved successfully at test time. Additionally, we
show that the learned collective exploration strategies extend to the
open-ended task setting, enabling the agents to effectively general-
ize to task trees with a depth of six, featuring an increased complexity
of subtasks, despite being initially trained on task trees comprising
only three subtasks.

3.1.2 Related Work

Cooperative behavior in multi-agent environments has long been a
topic of great interest in reinforcement learning [339] [340] [341]. Re-
cently, techniques from multi-agent reinforcement learning such as
self-play have been used to train agents to human level performance
in areas ranging from board games [224] to complex modern video
games [114] [113]. Other works study the emergence of coordination
and cooperation in populations of agents in complex competitive en-
vironments. [39] has shown that teams of agents competing against
each other in the game hide and seek can develop sophisticated
strategies such as tool use and even learn to exploit bugs in the envi-
ronments implementation. These works make use of forms of central-
ized training, such as shared agent parameters or self-play to achieve
their impressive results. [115] and [343] have shown that decentral-
ized methods, when combined with population-based training, can
lead to the emergence of complex shared cooperation and coordina-
tion strategies within teams of agents. [342] have further shown that a
simplified approach of training independent agents without any cen-
tralized information sharing or population-based training can lead
to competitive performance on the Starcraft Multi Agent Challenge
[344].

In order for agents to deal with environments where the task at hand
is unknown to the agent and sampled from large distribution of possi-
ble tasks, meta-learning has been proposed. Meta-learning allows an
agent to learn to use its existing knowledge to quickly adapt to new
tasks at test time [345]. Combining this approach with reinforcement
learning and recurrent neural networks has lead to agents that are
able meta-learn their own reinforcement learning algorithm, allowing
them to adapt and solve novel tasks [182] [183]. Recent works have
shown such Meta Reinforcement Learning (Meta RL) algorithms to be
very effective resulting in multi task robots that are able to adapt to
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Figure 3.4: Task Tree Sampling and Episode Rollout. A) shows the task tree sampling process. First three subtasks are sampled from the
distribution of subtasks (Section 3.1.3), one for each stage of the task tree. All of the objects required to solve the subtask for stage one and
some of the objects required by subtasks in later stages are then placed in the environment. The remaining objects required to solve the
later subtasks can be created through solving preceding subtasks (Section 3.1.3). B) shows an example of a single episode rollout. The agents
have to complete the subtasks sequentially in order to create objects which are needed by the subtasks in later stages. Since a new task tree
with different subtasks is sampled at the beginning of each episode and no information about the subtasks is given to the agents, the agents
have to explore the environment and interact with all present objects so solve the subtask at each stage. Videos of the agents behaviors can
be found on our companion website.

new tasks [346] [347] and environments [117] on the fly, even allowing
them to generalize their behaviors from simulations to the real world.
[196] shows that combining Meta RL with open ended procedurally
generated environments facilitates open ended skill acquisition and
allows agents to better adapt to novel environments. Similarly [44]
and [184] show that agents trained on vast diverse task spaces are
able to quickly adapt to novel tasks, even surpassing human adapta-
tion skills.

Work in combining multi-agent environments with Meta RL has so far
remained relatively sparse. [348] are exploring the use of multiple
agents acting simultaneously to efficiently explore the environment
in order to then leverage their pooled knowledge in the exploitation
phase to solve complex tasks. [349] uses Meta RL together with open
ended environment design to train a pool of agents on competitive
two player tasks. Closer to our work [44] and [184] also present results
for agents trained in multi agent settings in a multi task and Meta RL
fashion with open ended task distributions. However, these methods
employ either static checkpoints from a population of agents or older
versions of themselves to train an agent in multi agent episodes. Our
work therefore differs from this approach by training two decentral-
ized agents together in the same environment, without making use
of techniques like self-play or population based training, commonly
used in other works on emergent cooperation.

https://sites.google.com/view/collective-open-ended-explore
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3.1.3 Method

Environment

Our 2D environment is implemented using Simple-Playgrounds [350]
and features realistic physics for object movements and collisions,
as well as a range of interaction dynamics for different object types.
The agents have two continuous movement actions for turning an-
gles and forward walking speeds, as well as the two discrete grasping
and activating actions for interacting with the objects present in the
environment. The agents are able to pass through each other and can-
not grasp an object which is currently being held by the other agent.
This is done in order to limit noise caused by the agents interfering
with each other during training. As input the agents get a limited top
down view of their surroundings, preventing them from having full
vision of the environment. The environment itself consists of rooms
connected by large doorways, preventing the agents from diagonally
crossing the map (Fig. 3.4). We differentiate between two object types
required by the subtasks. Environment objects such as landmarks
are large square shaped immovable objects that are spawned at the
edges of the environment. Task objects are smaller and can bemoved
by the agents. Objects always have some form of interaction dynamic
either with another task object, an environment object or an agent.
The different interaction dynamics of environment objects, task ob-
jects and agents are explained in detail in (Section 3.1.3). The pool
of possible objects includes three different shapes and colors for a
total of nine different task objects, as well as a further four different
environment objects. Task objects are always randomly sampled be-
fore each episode and do not poses any fixed interaction dynamic,
encouraging the agents to explore by trying to combine different task
objects together to create new objects. Environment objects however
always possess the same interaction dynamic. Agents should there-
fore meta-learn how they can interact with a specific environment
object.

Task types We include five different subtask types in our environ-
ment. Although all of the tasks can be solved by a single agent alone,
the agents should nonetheless learn to cooperate in order to solve
the tasks as quickly and efficiently as possible.

Activate Landmarks: The agents are tasked with locating one or two
landmarks, which are randomly placed at the edges of the environ-
ment, and activate them. In the two landmark case, the agents have
to activate both of the landmarks within three hundred environment
steps of activating the first landmark. The agents are expected to
learn to split up and independently locate a landmark in order to
solve the task as quickly as possible.

Lemon Hunt: The agents need to find a specific object and switch
into the ”lemon” object by activating it. The resulting lemon object
can then be consumed by either agent. The agents should learn to
interact with all the task objects present in the environment and try
to activate them.
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Crafting: The agents need to combine two objects in the environment
to either spawn a new object or make an existing object disappear.
The agents are expected to first explore the environment until find-
ing a task object of interest and trying to combine it with other task
objects. Additionally the agents should coordinate to bring task ob-
jects together and not explore object combinations which have al-
ready been tried by the other agent.

In Out Machine: The agents need to find the correct object and bring
it to the in out machine, which is randomly spawned at the edge
of the environment. The object is then switched into an object re-
quired by following tasks. Therefore to efficiently solve this task, the
agents should try bringing all the objects present in the environment
to the in out machine until they find the correct object which can be
switched.

Drop Off Point: Similar to the in out machine, only now the agents
need to bring the correct object to the drop off point to make it dis-
appear of completing all of the preceding subtasks.

Procedural Generation of Task Trees At the beginning of each episode,
𝑑 subtasks are selected from categories of five different task types in
order to build a task tree of depth 𝑑 (Fig. 3.4), similar to the concept of
task recipes in [184]. Initially the end condition that must be satisfied
for the last task in the task tree to be considered a success is first se-
lected, with the possible end conditions being object exists or object
does not exist. The subtasks are then sampled recursively to depth 𝑑 ,
where the subtask at each level outputs the objects required by the
subsequent task. The set of subtasks which can be sampled at each
stage depends on the stage and the subtasks sampled in preceding
stages. At each stage, the objects required by the subtask are sam-
pled uniformly from a pool of nine different objects. The environment
objects required by all sampled subtasks and the objects required for
the first subtask are then spawned in at random points in the envi-
ronment. Using this method, we can build complex task trees with
arbitrary depth, procedurally generating an open-ended distribution
of tasks.

Training Setup

Reward Structure After successfully completing a subtask in the task
tree agents are jointly rewarded for each time step until the end of
the episode, encouraging them to continue improving their perfor-
mance even in subtasks with very high success rates. Additionally,
the reward per time step increases exponentially for completing sub-
tasks in higher stages, incentivizing the agents to learn to better solve
subtask of higher stages rather then marginally improving their per-
formance in the easier to solve lower stages. We observe that this
reward structure significantly improves performance over rewarding
the successful completion of each stage the same. The reward struc-
ture in combination with the tasks trees made up of different sub-
tasks leads to a smooth improvement of the agent across different
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stages during training, eliminating the need for any explicit form of
curriculum design.

Agent Architecture We employ a similar approach to [342], where
each agent in the environment is independently parameterized by a
neural network which is optimized using standard proximal policy op-
timization [320], without sharing any parts of the network. Each agent
only gets as input its own limited top down view of the environment
as well as its own action and reward from the previous step as usu-
ally done in Meta-RL. No additional information about the task tree,
environment objects or the other agent are given to the agents. For
the agent architecture we use the same convolutional neural network
used in [112], followed by a one layer fully connected network of size
[256] whose output is fed through a ReLU non-linearity and concate-
nated with the agents action and reward from the previous step. This
is followed by a one layer LSTM [18] with size [256] and finally by a pol-
icy head consisting of three layers with sizes [64, 64, 4] and a value
head with sizes [64, 64, 1], where each of the hidden layers is followed
by a ReLU non-linearity.

Agent Training At the beginning of each episode, we first sample
whether the episode will be played in the multi-agent or single-agent
paradigm. In the multi-agent case, the agents will be placed in the
same environment, whereas in the single-agent case, the agents will
play in two different environments without interacting with each other.
We then sample one task tree in the multi-agent case or two task
trees, one for each environment, in the single-agent case through
the procedure described in (Section 3.1.3). Since all subtasks can be
solved by a single agent during training, we do not modify the task
distribution for single-agent episodes. As is common in Meta-RL, the
agents do not get any information about which subtasks have been
sampled and in which order they should be solved. They are then
randomly placed in the environment and have a limit of 1000 environ-
ment steps to solve all the subtasks sequentially. After the limit is up,
the environment is reset, we resample the multi or single agent set-
ting and sample one or two new task trees. We train on batches of 480
complete episodes for a total of 750000 episodes. We linearly decay
the learning rate to 0 from a starting value of 0.00025 over the course
of training. As the agents are fully decentralized, no information is
shared between them during training. We therefore update the pa-
rameters of each agent’s network based only on its own experiences
from each batch.

3.1.4 Results

In this section, we present the experimental results for our training
paradigms, both with and without single-agent episodes. We define
the performance of our agents as the rate of completed subtasks
per stage. We find that including single-agent episodes improves
the performance during training. Further, we show that decentralized
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Figure 3.5: Success rates for 100% vs 50%multi agent
episodes during training

agents trained in our environment exhibit strong generalization abil-
ities when encountering objects unseen during training and complex
novel tasks which require efficient coordination between the agents
in order to be solved. Finally, we highlight the agents’ proficiency
in generalizing to the open-ended task setting. This is demonstrated
through an evaluation of their performance on task trees encompass-
ing six stages, instead of the depth of three stages encountered dur-
ing training.

Training Performance

Our findings indicate that the straightforward approach of training
two decentralized agents together solely on multi-agent episodes re-
sults in suboptimal performance. When looking at the individual per-
formances of the agents during single-agent episodes, we observe
significant disparities in skill levels (Fig. 3.6). We argue that these per-
formance discrepancies stem from the credit assignment problem,
which emerges due to multiple agents sharing rewards [351]. When
one agent accomplishes a subtask, both agents receive the reward,
resulting in potentially misleading parameter updates for the agent
that was not directly involved in completing the subtask. This dy-
namic canmagnify minor skill disparities at the outset of training, ulti-
mately culminating in substantial differences in learned behaviors by
the end of training. To combat this problem we propose training the
agents on both single and multi agent episodes, as the multi-agent
credit assignment problem can not arise during single agent episodes.
We find that this greatly decreases the skill differences between the
agents and increases the single agent performances (Fig. 3.7), leading
to a large gain in performance in multi agent episodes. While agents
trained on multi and single agent episodes are able to solve the vast
majority of subtasks for all stages within the time limit, agents trained
solely on multi agent episodes perform worse on stages one and two
and fail to solve subtasks in stage three in the majority of episodes.
The large dropoff in success rate from stage two to stage three is
mainly caused by the agents running out of time. This indicates that
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Figure 3.6: Mean stage 3 success rate difference be-
tween two agents trained on 100% vs 50% multi
agent episodes

agents trained on multi and single agent episodes are able to solve
the subtasks much quicker when compared with agents that where
only trained on multi agent episodes. In the following we therefore
limit our evaluations to the case of mixed single andmulti agent train-
ing.

Generalization Performance

Novel Objects We replace all task objects present during training
with novel shapes and colors and evaluate the agents performance
on the training task distribution in multi-agent episodes. We find that
including novel task objects does not lead to any decrease in perfor-
mance when compared to the training performance with the standard
task objects (Fig. 3.8). When looking at videos of the agents, we ob-
serve that they interact with novel task objects in the same fashion
as they would with task objects seen during training. They explore
the possible task object combinations to find environment objects or
other task objects which lead to a successful interaction. As the col-
ors and shapes of task objects do not carry any information about
the task objects interaction possibilities, we suspect that the agents
learn to not focus on any specific characteristics of the task objects.
Instead, the agents rely on powerful exploration to try out all possible
object interactions in the environment to solve tasks, allowing them
to generalize seamlessly to novel objects.

Forced Cooperation To test the ability of the agents to effectively co-
operate, we devise three subtasks which forcibly require the agents
to cooperate in order to be solved, based on the subtasks presented
in (Section 3.1.3). We call these tasks ”forced cooperative”. Detailed
descriptions for the forced cooperation subtasks can be found in the
Appendix A.5.1. During evaluation we switch out the landmarks and
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Figure 3.7:Mean stage 3 success rate on single agent
episodes for agents trained on 100% vs 50% multi
agent episodes

lemon hunt subtasks for these three forced cooperation subtasks and
present the average results over 4800 episodes. We observe that the
agents still show strong performance when it is required for them to
cooperate in order to solve tasks, even with the tasks now requiring
much more intricate coordination for successful completion (Fig. 3.9).
This suggests that the cooperative behaviors learned during training
are able to help the agents generalize to settings where cooperation
is required, despite never encountering such as scenario during train-
ing. Notably, the performance of agents trained without any forced
cooperative tasks does not differ significantly from the performance
of the agents trained only in the forced cooperative setting, when
evaluated on forced cooperative tasks. We hypothesize that this is
due to the high difficulty of the forced cooperation tasks preventing
the agents to efficiently learn without any form of curriculum. When
analyzing the agents behavior, we observe that when confronted with
novel behaviors of previously seen environment objects like land-
marks, they try to exploit the behaviors learned during training. How-
ever, after some amount of unsuccessful tries, the agents start ex-
ploring the environment until finding an environment or task object
which they are able to interact with. Paired with the agents behav-
ior to often first explore the environment separately, they are able to
solve complex coordination tasks like the forced cooperation version
of the landmarks subtask, where the agents have to find and activate
their respective version of the landmark within ten environment steps
of each other. To gain a better understanding of how the agents are
able to solve forced cooperation tasks where refer the reader to the
accompanying website with videos

Novel Task To further evaluate the agents cooperative abilities and
their capacity to generalize to novel tasks we introduce the ”pressure
plate” task, which the agents have never seen during training. In this
task, one agent is tasked with remaining in proximity to the pressure
plate landmark and continuously activating it. The second agent is
responsible for locating a task object and transporting it to the ”in

https://sites.google.com/view/collective-open-ended-explore
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Figure 3.8: Success rates with novel objects

Figure 3.9: Evaluation for agents trained on 0% vs
100% forced cooperation tasks

Figure 3.10: Success rates for open ended explo-
ration on 6 stages and 4000 timesteps
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and out” machine, which only works if the pressure plate is activated,
in order to switch it to the condition object which indicates success-
ful completion of the task. This task requires coordination between
the agents to determine which one remains at the pressure plate and
which one explores the environment. We find that the agents are able
to solve this task on 45 percent of the trials, showing impressive gen-
eralization abilities. Observing videos of the agents playing this task,
we notice a recurring pattern wherein the agents activate the pressure
plate and promptly move away. Once the pressure plate deactivates,
the agents quickly return to reactivate it, resulting in a repetitive loop
where the agents continuously trigger the pressure plate. While both
agents frequently become stuck in this loop initially, we observe in
many instances that one agent manages to break free and begins to
explore the environment. Ultimately, this agent successfully trans-
ports the task object to the ”in and out” machine, thereby effectively
solving the pressure plate task. We hypothesise that the behavior for
one agent to break the loop arises during training when agents learn
that they should split up their efforts in order to efficiently explore
the environment and solve tasks as quickly as possible, similar to the
behaviors observed in (Section 3.1.4). The agents ability to general-
ize to novel forced cooperation tasks therefore seems to mainly stem
from their exploration and coordination abilities.

Open Ended Exploration We evaluate the agents ability to open end-
edly explore their environment by setting the number of stages in
the task tree to six and increasing the time limit to 4000 environment
steps (Fig. 3.10). We further set the rewards for completing each sub-
task to zero in order to prevent giving the agents a reward feedback
for stages higher than three, which they have not seen during train-
ing. We observe that this boosts performance on higher stages during
evaluation. We find that agents generalize surprisingly well to task
trees with six stages. It is worth emphasizing that as we increase the
number of stages in the task tree, the number of task objects present
in the environment also increases. Consequently, this exponentially
expands the number of possible combinations of task objects that
the agents must experiment with in order to solve the subtasks. The
agents strong performance therefore not only shows their capacity for
collective open ended exploration but also showcases their capacity
to tackle subtasks of higher complexity compared to those encoun-
tered during training.

3.1.5 Conclusion

In this work we investigate the emergence of collective exploration
strategies in decentralized agents trained on an open ended distri-
bution of tasks in a Meta RL fashion. While previous related works
have studied how cooperative behaviors can emerge from Meta-RL in
an open-ended task space [44][184], our approach is, to our knowl-
edge, the first attempt at demonstrating it in a decentralized train-
ing paradigm, together with available open source code for repro-
ducibility. We show that decentralized agents trained only on multi

https://sites.google.com/view/collective-open-ended-explore
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agent episodes exhibit subpar performance and propose to incor-
porate single agent episodes to boost the individual agents perfor-
mance. Agents trained using this approach exhibit strong generaliza-
tion abilities to unseen objects and tasks requiring the agents to co-
operate, indicating the emergence of collective exploration strategies
despite never being forced to cooperate during training. We further
show that the agents are able to generalize their exploration behavior
to an open ended setting and solve task trees of twice the length com-
pared to task trees seen during training. We observe that withholding
any reward feedback from the agents at test time boosts the explo-
ration performance, suggesting the emergence of an intrinsic motiva-
tion to open endedly explore the environment, even in the absence
of extrinsic rewards. However, directly isolating which learned behav-
iors allow the agents to cooperate and coordinate their movements
remains difficult. Adding a direct communication channel between
the agents could therefore present a promising method to boost the
agents multi agent performance and allow for a clearer understand-
ing of their learned cooperative behaviors by analyzing the learned
communication. Additionally, incorporating more sophisticated ap-
proaches to solving themulti agent credit assignment problem and in-
vestigating how to boost the agents individual performance while pre-
serving their ability to cooperate holds potential to greatly increase
the complexity of the agents learned cooperative behaviors.

Finally, looking at the learned behaviors (see videos), the agents seem
to change the target interaction that they try periodically. This sug-
gests the emergence of a proto-goal selection mechanism within the
agent’s recurrent policy, potentially in the space of object or interac-
tion between objects. Further work needs to be done to confirm (or
infirm) this emergence of implicit internal goal selection.

In the next chapter, we will consider agents pre-equipped with a goal
generation mechanism, i.e. autotelic agents. We will experimentally
show the crucial role of goal alignment in efficiently learning coop-
erative tasks in this setting and will explore how communication can
help agents to coordinate their exploration.

https://sites.google.com/view/collective-open-ended-explore
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3.2 Autotelic Reinforcement Learning in Multi-Agent Environments

Context
This work began with the master internship of Elías Masquil which I co-supervised. After the end of
Elías’s internship we pursued the experiments and writing with Eleni Nisioti. In particular, I conducted
the majority of the experiments and training reported in this contribution.
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in Multi-Agent Environments. In Conference on Lifelong Learning Agents (pp. 137-161). PMLR.

I am co-first author of the paper

I presented this work at the Conference on Lifelong Learning Agents (Collas) 2023 in Montreal.

Abstract
In the intrinsically motivated skills acquisition problem, the agent is set in an environment with-
out any pre-defined goals and needs to acquire an open-ended repertoire of skills. To do so the
agent needs to be autotelic (deriving from the Greek auto (self) and telos (end goal)): it needs to
generate goals and learn to achieve them following its own intrinsic motivation rather than exter-
nal supervision. Autotelic agents have so far been considered in isolation. But many applications
of open-ended learning entail groups of agents. Multi-agent environments pose an additional chal-
lenge for autotelic agents: to discover and master goals that require cooperation agents must pursue
them simultaneously, but they have low chances of doing so if they sample them independently. In
this work, we propose a new learning paradigm for modeling such settings, the Decentralized Intrinsi-
cally Motivated Skills Acquisition Problem (Dec-IMSAP), and employ it to solve cooperative navigation
tasks. First, we show that agents setting their goals independently fail to master the full diversity of
goals. Then, we show that a sufficient condition for achieving this is to ensure that a group aligns
its goals, i.e., the agents pursue the same cooperative goal. Our empirical analysis shows that align-
ment enables specialization, an efficient strategy for cooperation. Finally, we introduce the Goal-
coordination game, a fully-decentralized emergent communication algorithm, where goal alignment
emerges from the maximization of individual rewards in multi-goal cooperative environments and
show that it is able to reach equal performance to a centralized training baseline that guarantees
aligned goals. To our knowledge, this is the first contribution addressing the problem of intrinsically
motivated multi-agent goal exploration in a decentralized training paradigm.
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During training, each agent chooses its own goal and attempts
to solve it in a shared environment.

During evaluation, the same goal is externally assigned to the agents.
Different goals are chosen at different episodes to cover the environment's
affordances. 
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Figure 3.11: Illustrative example of learning in a Dec-IMSAP: two agents are in a shared environment where goals have the form of doors that
open upon matching each lock with the key of the same color. An agent can carry at most one key, so it takes two to open a door. (Left) As
agents are sampling their own goals, the group may experience episodes that cannot be solved by at least one agent: if the blue agent picks
the red key and the pink agent picks the green then the blue agent will succeed and the pink will fail. (Right) During evaluation agents are
assigned with the same goal.

1: We provide code for reproducing the experi-
ments presented in this contribution at https://
github.com/Reytuag/imgc-marl

3.2.1 Introduction

Many multi-agent scenarios require the cooperation of agents with a
rich diversity of skills. Multi-player games such as StarCraft [352] and
Capture the Flag [115] and real-world scenarios such as cooperative
navigation in teams of robots [353], require agents that can coordi-
nate their actions in the face of continuously-arising new challenges.
When alone, a reinforcement learning (RL) agent can acquire a wide
diversity of skills by being goal-conditioned [123] and intrinsically mo-
tivated [135, 144, 354]: the former means that the agent can pursue
different goals at different times and conditions its learning on its
current goal, while the latter means that these goals are generated
by the agent using some internal reward mechanism instead of being
externally set by the human designer. Such agents have been termed
autotelic [144]. But what happens when you place multiple autotelic
agents in the same room, expecting them to autonomously discover
all the room’s affordances? We argue that you will stumble upon a
challenge: for agents independently generating their own goals, the
probability of sampling the same one reduces dramatically with the
size of the goal space. Thus, we expect that these agents will fail to
master goals that require cooperation (such as lifting a heavy box), as
they will collectively pursue them rarely and receive a noisy training
signal due to the fact that the goals of others are not directly observ-
able. In this work, we introduce a new type of problem for multi-agent
RL, the Decentralized Intrinsically Motivated Skills Acquisition Prob-
lem (Dec-IMSAP), to capture such settings, propose a decentralized
algorithm for tackling it, the Goal-coordination game, and evaluate it
in a cooperative navigation task 1.

For single-agent settings, autonomous skill discovery has been for-
malized as the Intrinsically Motivated Skills Acquisition Problem [144].
To meaningfully extend it to multi-agent settings we need to con-
sider environments that require cooperation: some of the goals will
be cooperative, i.e., at least one other agent needs to act for the
agent to achieve its goal, while the rest will be independent, i.e., they

https://github.com/Reytuag/imgc-marl
https://github.com/Reytuag/imgc-marl
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can be achieved independently of others. To study the Dec-IMSAP
we propose a new training/evaluation paradigm: during the training
phase agents are autonomously setting their own goals and learn-
ing to achieve them in a fully-decentralized manner, while, during
evaluation, we externally provide agents with the same cooperative
or individual goal, ensuring that a wide diversity of goals is tested
across evaluation episodes. We provide an illustrative example of
this problem setting in Figure 3.11.

Intrinsic motivation originated in the field of cognitive science, with
studies focusing on human infants due to their impressive ability to
efficiently learn new skills [135]. Explanations rely on exploratory
play, during which infants generate their own goals and learn how
to achieve them for the mere purpose of discovering new learning
situations [329, 355]. While studies primarily consider a single human
subject, some study infants engaging in cooperative play and show
that they can plan alongside others [356–358]. According to theories
of human social intelligence [338], we may owe our ability to cooper-
ate more extensively than other species to our shared intentionality:
to solve tasks that require cooperation we attend to the same goal
with others and know that we are doing so.

Does shared intentionality play an equally important role in groups
of artificial agents and, if so, how can we guarantee it in a fully-
decentralized training regime? This is the main research question
we aim to address with our study of the Dec-IMSAP. As we more con-
cretely explain in Section 3.2.6, we are motivated by real-world appli-
cations, such as groups of cleaning robots or disaster robotics, where
a group needs to adapt to a diversity of tasks, some of which may
require cooperation. To address this question empirically, we study
a simplified two-player setting with goal-conditioned RL agents [144]
that sample goals randomly from a fixed, pre-defined set. Such agents
have been previously extended to multi-agent settings assuming ex-
ternal supervision during training [359], thus not considering autonomous
learning. We measure the degree of shared intentionality as goal
alignment, a metric quantifying the percentage of training episodes
during which two agents pursue the same cooperative goal. First, we
artificially control for the level of alignment and observe it is highly
correlated with performance. Then, we propose the Goal-coordination
game, a fully-decentralized emergent communication algorithm that
enables goal coordination during training. Under the Goal-coordination
game, before acting, an agent, chosen at random, takes the role of a
leader, samples its own goal and communicates a message to the fol-
lower. which selects its own goal based on it. Crucially, the agents
learn how tomap goals to messages and vice versa by purely maximiz-
ing their individual rewards. By coordinating in the message, rather
than the goal space, agents using the Goal-coordination game can
align their goals even if they employ different goal representations.
We show that alignment emerges so that the population reaches equal
performance to a centralized setting that guarantees alignment. To
get a clearer understanding of the temporal dynamics of the Goal-
coordination game, we analyze the co-evolution of messages, goal
alignment and group rewards and discover that interesting collective
behaviors emerge. Our contributions are:
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1. the formulation of the Dec-IMSAP, a new type of problem for
studying intrinsic motivation in multi-agent systems with goal-
conditioned RL agents;

2. a detailed analysis on the impact of goal alignment between
agents in the Dec-IMSAP;

3. an algorithm for solving the Dec-IMSAP, the Goal-coordination
game, that enables agents in a group to acquire a large reper-
toire of cooperative skills in a fully-decentralized setting by learn-
ing how to communicate about their respective goals.

We discuss related works in Section 3.2.2 and, in Section 3.2.3, provide
definitions from existing works in single-agent and multi-agent RL
that we built upon to formulate the Dec-IMSAP. We, then, present our
formal definition of the Dec-IMSAP and the algorithm that we pro-
pose for solving it, the Goal-coordination game in Section 3.2.6. In
Section 3.2.7, we empirically analyze the behavior of groups of agents,
where we employ cooperative navigation tasks as instances of the
Dec-IMSAP. Finally, we discuss limitations and future directions for
our work in Section 3.2.8.

3.2.2 Related Works

Early in RL development, real-world applications, such as human-
interfacing robots, pushed for algorithms that can solve, not just a
static task, as classically assumed by the framework of Markov Deci-
sion Processes, but tasks that change with time [360]. This problem
setting, termedmulti-goal RL, has been formulated under frameworks
such as options and skills [361, 362], goal-conditioned policies [144,
363] and universal value function approximators [364]. Multi-goal RL
has been extended to multi-agent settings, such as cooperative navi-
gation in fleets of robots, under the framework of multi-goal Markov
games [359, 365]: a group of agents employing goal-conditioned poli-
cies is trained under the supervision of a human designer that se-
lects which goal each agent needs to pursue during each training
episode.

Real-world applications soon posed another, more stringent require-
ment on RL: tasks do not just vary with time but may change in unpre-
dictable ways. Thus, autonomously discovering new tasks and adapt-
ing online to them became part of the problem [366, 367]. Inspiration
for tackling this setting was found in child development, in particu-
lar in exploratory play, during which infants showcase an impressive
ability to self-generate their own goals and autonomously learn how
to achieve them. This mechanism has been termed intrinsic motiva-
tion and has inspired a variety of unsupervised learning objectives
for RL algorithms in both single-agent [140, 250, 368, 369] and multi-
agent [370] settings. Not all intrinsically-motivated agents are goal-
conditioned [140, 369, 370]. The ones that are, termed autotelic [144],
are particularly interesting for real-world applications, as they pre-
cisely capture multi-goal settings with goals set and mastered au-
tonomously by the agent. If we attempt to transfer autotelic RL to
multi-agent settings, we see that multi-goal Markov games are not
adequate. By assuming that an external supervisor is deciding which
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goals will be pursued and how they will be divided among agents,
it bypasses the main question in open-ended settings: how can the
agents set goals autonomously? Taking into consideration that some
of these goals may require the coordination of multiple agents, au-
totelic learning becomes more challenging when transferred to multi-
agent setups.

Although previous works studied the interaction between autotelic
agents and social partners [251, 371], we first propose here to study
the coordination of goals set by a group of autotelic agents with-
out any prior knowledge. For this, we can draw inspiration from the
problem of intra-episode action coordination, a long-standing sub-
ject in MARL. For example, in a cooperative navigation task, others
may act as obstacles that affect the observations perceived by an
agent in an unpredictable way. To tackle this problem, algorithms
may choose to learn a centralized critic while keeping policies de-
centralized [372, 373], model the behaviors of others [353] or learn
to communicate [374–376]. This last approach is particularly promis-
ing when the group is heterogeneous, as coordination takes space
in an abstract, learned space. Recent emergent communication algo-
rithms have focused on action selection during the episode, while our
work considers communication for goal selection before the episode
starts. This is a novel problem that we study in a simplified setting
and can benefit from earlier algorithms in the field developed pre-
cisely for studying the emergence of shared lexicons in grounded set-
tings [376].

3.2.3 Background

Wefirst describe the problemof autonomous skill acquisition in single-
agent settings as an evolution from classical RL to goal-conditioned
and intrinsically-motivated agents in Section 3.2.4. Then, in Section 3.2.5,
we discuss multi-goal Markov games as a generalization of MARL to
goal-conditioned settings with externally-provided goals .

3.2.4 Intrinsically motivated goal-conditioned
reinforcement learning

In RL an agent observes an environment and performs actions on
it that incur rewards, aiming at maximizing the rewards it accumu-
lates. This interaction is commonly formalized as a Markov Decision
Processes (MDP): at each time step 𝑡 of an episode that lasts for 𝑇
time steps the agent observes the environmental state 𝑠𝑡 , performs
action 𝑎𝑡 and receives reward 𝑟𝑡 . The policy 𝜋(𝑎𝑡 |𝑠𝑡 ), which describes
the agent’s behavior as a mapping from states to actions, is interac-
tively learned from experience by maximizing the cumulative reward
𝐺𝑡 = ∑𝑇

𝑡=0 𝛾 𝑡 𝑟𝑡 , where 𝛾 is a parameter quantifying how heavily future
rewards are discounted [108]. Formally, we denote an MDP as a tu-
ple (𝒮 ,𝒜 , 𝒯 , 𝜌0, 𝑅), where the state space 𝒮 and action space 𝒜 indi-
cate all possible configurations for the state and action respectively,
𝒯 (𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡 ) is the transition function that controls the distribution
of the next state 𝑠𝑡+1 from the current state 𝑠𝑡 when the agent takes
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Figure 3.12: (Left) Illustration of an autotelic agent equipped with: a goal-sampling distribution𝒟𝑛(𝒢 ) for selecting its own goal at the beginning
of each training episode, the goal-conditioned policy 𝜋𝑔𝑛 and reward function 𝑅𝒢𝑛 . (Middle) Two autotelic agents in a shared environment,
trained in a fully-decentralized manner and able to exchange messages 𝑚 through a discrete communication channel that helps them
coordinate their goal selection. (Right) Illustration of the Goal-coordination game: each agent maintains its own matrix associating goals to
messages (see Section 3.2.6 for a description of how this matrix is learned). After the leader and follower roles are randomly assigned to the
two agents, the leader samples its own goal (e.g. 𝑔3) and transmits the message sampled from a softmax on the corresponding row (𝑚1). The
follower samples the goal from a softmax on the corresponding column (𝑔2)

action 𝑎𝑡 , 𝜌0 is the distribution over the initial states, and the reward
function 𝑅(𝑠𝑡 , 𝑎𝑡 ) determines the reward that an agent receives at each
time step for a given state-action combination.

Agents may need to reward themselves differently based on the task
they are currently occupied with. For example, if we imagine a clean-
ing robot in a household, then the action “turn on the oven” should
be rewarded if the robot’s task is to prepare food but penalized if
the task is to make sure the tenant can safely leave for a weekend
trip. To expand MDPs to suit this multi-task nature of problems, the
goal-conditioned RL paradigm introduces the notion of a goal and
conditions the reward function and policy on it. Formally, a goal 𝑔 is
a tuple (𝑧𝑔 , 𝑅𝑔), where 𝑧𝑔 is a goal embedding, 𝑅𝑔 denotes the goal-
conditioned reward function and 𝜋𝑔 the goal-conditioned policy [144,
360, 364, 377]. We can, thus, define a multi-goal MDP as a set of MDPs
that share {𝒮 ,𝒜 , 𝒯 , 𝜌0} and differ only in the reward function 𝑅𝑔 . We
denote the space of possible goals as 𝒢 .
Multi-task learning is necessary but not sufficient for open-ended
learning. In the latter, the agent needs to master not just multi-
ple tasks but a continuously increasing set of tasks, potentially un-
known at the time of the agent’s design. Thus, in contrast to the clas-
sical goal-conditioned setting where goals are externally provided,
the agent will need to generate them itself, through what is called
intrinsically-motivated goal exploration[250, 378–380]. This setting
has been termed as the Intrinsically-Motivated Skills-Acquisition Prob-
lem and the agents that can solve it as autotelic agents [144]. Con-
trary to the classical RL paradigm where a reward function is part
of the environment, an autotelic agent encapsulates the reward func-
tion 𝑅𝑔 , alongside with a mechanism for sampling goals from the goal
space, the goal-sampling function 𝒟𝒢 . We provide an illustration of
an autotelic agent on the left of Figure 3.12.
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3.2.5 Goal-conditioned multi-agent reinforcement
learning

In multi-agent RL 𝑁 agents interact in a shared environment, a set-
ting that can be formalized as a Markov Game [381]. The group’s
behavior is captured by the joint action 𝑎𝑡 = ⟨𝑎1,𝑡 , ⋯ , 𝑎𝑁 ,𝑡 ⟩ where 𝑛
indicates agent’s index. After all actions are executed, the environ-
ment returns the next state 𝑠𝑡+1 and a local reward for each agent
𝑟𝑛,𝑡 = 𝑅𝑛(𝑠𝑡 , 𝑎𝑡 ). To model decentralized learning in a Markov Game
we can employ the framework of decentralized partially-observable
MDPs (Dec-POMDPs) [382]. Decentralization characterizesmulti-agent
systems where agents do not have access to the observations of oth-
ers and partial observability refers to the fact that this local informa-
tion may not be sufficient to infer the environment’s state, which now
includes the other agents. To capture partial observability POMDPs in-
troduce the notion of an observation 𝑂𝑛 which maps the environmen-
tal state to a local observation for agent 𝑛. Formally, a Dec-POMDP is
modeled as a tuple (𝒩 ,𝒮 , {𝒜𝑛}, 𝒯 , {ℛ𝑛}, {𝒪𝑛}), where 𝒩 denotes the
set of agents and 𝒜𝑛 and 𝒪𝑛 are the action and observation space of
a single agent.

Multi-goal Markov Games extend Markov Games to goal-conditioned
settings [359]. They arise when we replace the reward function with
one conditioned on goals that is shared by all agents: 𝑟𝑛,𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑔𝑛).
In multi-goal Markov Games goals are externally provided by a super-
visor. Each agent has one fixed goal, only known to itself, and rewards
are individual even though the reward function is shared, as they are
conditioned on goals.

3.2.6 Autotelic agents in goal-conditioned games

Motivation

How can a learning framework model a group of agents whose objec-
tive is to learn a diversity of goals in a shared environment without
external supervision? Autotelic learning well captures autonomous
skill acquisition but does not consider interactions between multiple
agents. Multi-goal Markov Games, on the other hand, model interac-
tions of co-existing goal-conditioned agents but do not account for
the fact that agents may be generating their own goals. We refer to
this problem setting as the Decentralized Intrinsically Motivated Skills
Acquisition Problem (Dec-IMSAP) and, in the following, provide a for-
mal definition for it.

Formalization

A Dec-IMSAP is modeled as a tuple (𝒩 , 𝒮 , {𝒪𝑛}, {𝒜𝑛}, 𝒯 , {𝑅𝑔𝑛 }, {𝒟𝑛(𝒢 )}),
where 𝒩 is the set of 𝑁 agents, 𝒮 is the state space, denoting all the
possible configurations of all 𝑁 agents and the environment, 𝑂𝑛 and
𝒜 𝑛 are the observation and action space for a single agent, 𝒯 (𝑠′|𝑠, 𝑎)
the transition function, 𝑅𝑛𝑔 is the goal-conditioned reward function
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and𝒟𝑛(𝒢 ) is the goal-sampling distribution of agent 𝑛. Note that, dif-
ferently frommulti-goal Markov Games, described in Section 3.2.5, the
reward function is not shared among agents. This is because, as we
described in 3.2.4, in intrinsically-motivated learning the reward func-
tion is internal to the agent and, thus, may differ across agents. Also,
we assume that the goal space 𝒢 which contains all possible goals
𝑔, is known and identical for all agents. We illustrate two autotelic
agents in a shared environment in the middle of Figure 3.12.

At the beginning of a training episode, each agent 𝑛 samples its own
goal 𝑔𝑛 ∈ 𝒟𝑛(𝒢 ), executes its goal-conditioned policy 𝜋𝑔𝑛𝑛 and adjusts
its behavior tomaximize the cumulative reward using goal-conditioned
RL. After a fixed number of training iterations, agents will be eval-
uated over all possible tasks in a coordinated fashion. By ”coordi-
nated” we mean that, during evaluation, agents are assigned with the
same, randomly-sampled goal. By doing so, we ensure that there is a
fair evaluation of the group’s ability to solve all possible cooperative
tasks. Agents will be evaluated on the cumulative reward they get
and the time they take to solve the goal.

The Dec-IMSAP is a problem formulation that can well capture the
need for autonomous skill acquisition in teams of robots employed
in real-world applications. For example, picture a group of assistance
robots employed by a company to clean their offices. Naturally, the
team is expected to execute various tasks, some of which may re-
quire a single robot while others may require multiple of them (for
example carrying a heavy table to another room). How can the com-
pany be certain that the robots can execute any possible task when
asked to? Following an externally-supervised training paradigm, the
company could list all anticipated tasks, assigning a sub-task to each
agent [359]. But this approach quickly becomes impractical once one
acknowledges that the list may be large and change in unanticipated
ways. Under the Dec-IMSAP, we propose an unsupervised training
paradigm to exactly tackle these challenges. In this example, the
group of agents is left for some time in the offices to discover all their
affordances and learn how to solve them. In our proposed solution,
the robots can come from different manufacturers, as they learn a
communication protocol that allows them to coordinate even if their
goal representations differ.

To solve the Dec-IMSAP the agents must learn how to solve a wide
diversity of cooperative goals during training. Since both goal selec-
tion and training are decentralized this is not guaranteed: if agents
sample their goals independently then some cooperative goals may
not be pursued enough times during training for the group to learn
how to achieve them. In addition, the reward feedback is noisy: even
if agents have learned optimal policies for all cooperative goals, they
can obtain zero reward if their sampled goals are inconsistent (a case
we have illustrated on the left of Figure 3.11).

The Goal-coordination game

We would like to introduce a process that allows the agents to coor-
dinate their goals without introducing centralization nor pre-existing
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Algorithm 1: Goal-coordination game
1 Input: Population: 𝒫 = [𝑛1 , ⋯ , 𝑁 ], matrix update rate 𝛼 , message space size 𝑀 , goal space

size 𝐺, batch size 𝐵
2 for agent 𝑛 ∈ 𝒩 do
3 Initialize 𝐶𝑛 = 𝑧𝑒𝑟𝑜𝑠(𝐺,𝑀) ; /* Initialize matrices */
4 while not converged do
5 rollouts = []; /* Collect a batch of episodes */
6 for episode ∈ {1, ⋯ , 𝐵} do
7 𝑙 = sample(𝒫 ) ; /* Randomly select leader */
8 𝑓 = sample(𝒫 − 𝑙)
9 𝑔𝑙 = l.chooseGoal() ; /* Sample goal with 𝒟𝒢 */
10 𝑚𝑙 = softmax(𝐶𝑙 [𝑔𝑙 , ∶])
11 𝑚𝑓 = 𝑚𝑙
12 𝑔𝑓 = softmax(𝐶𝑙 [∶, 𝑚𝑓 ])
13 rollouts.append(collectRollout(𝑙 , 𝑓 , 𝑔𝑙 , 𝑔𝑓 )) ; /* Run a single episode */
14 for agent 𝑛 ∈ 𝒩 do
15 Initialize 𝑢𝑝𝑑𝑎𝑡𝑒𝑛 = 𝑧𝑒𝑟𝑜𝑠(𝐺,𝑀);Initialize 𝑛𝑜𝑟𝑚𝑛 = 𝑧𝑒𝑟𝑜𝑠(𝐺,𝑀)
16 for rollout ∈ rollouts do
17 for agent 𝑛 ∈ 𝒩 do
18 𝑛.𝑡𝑟𝑎𝑖𝑛𝑃𝑜𝑙𝑖𝑐𝑦(𝑟𝑜𝑙𝑙𝑜𝑢𝑡𝑠) ; /* Update policies with new experience */
19 𝑛1 , 𝑔1 , 𝑚1 , 𝑟1 = 𝑟𝑜𝑙𝑙𝑜𝑢𝑡.𝑙, 𝑟𝑜𝑙𝑙𝑜𝑢𝑡.𝑔𝑙 , 𝑟𝑜𝑙𝑙𝑜𝑢𝑡.𝑚𝑙 ; /* Unpack information */
20 𝑛2 , 𝑔2 , 𝑚2 , 𝑟2 = 𝑟𝑜𝑙𝑙𝑜𝑢𝑡.𝑓 , 𝑟𝑜𝑙𝑙𝑜𝑢𝑡.𝑔𝑓 , 𝑟𝑜𝑙𝑙𝑜𝑢𝑡.𝑚𝑓
21 𝑢𝑝𝑑𝑎𝑡𝑒𝑛1 [𝑔1 , 𝑚1]+ = 𝑟1 ; 𝑛𝑜𝑟𝑚𝑛1 [𝑔1 , 𝑚1]+ = 1;𝑢𝑝𝑑𝑎𝑡𝑒𝑛2 [𝑔2 , 𝑚2]+ = 𝑟2 ;𝑛𝑜𝑟𝑚𝑛2 [𝑔2 , 𝑚2]+ = 1
22 for agent 𝑛 ∈ 𝒩 do
23 𝐶𝑛 = (1 − 𝛼) ⋅ 𝐶𝑛 + 𝛼 ⋅ 𝑢𝑝𝑑𝑎𝑡𝑒𝑛/𝑛𝑜𝑟𝑚𝑛 ; /* Apply matrix update */

knowledge within the group and is flexible enough to deal with any
behavior arising during training. To achieve this, we propose an al-
gorithm inspired from the Naming Game, an algorithm originally in-
troduced to help a population of agents invent a shared lexicon [376].
Our proposed algorithm, whose pseudocode we present in Algorithm
1, takes place right before an episode starts. As is common in emer-
gent communication literature, it employs two agents and can be ex-
tended by considering a population of agents and randomly sampling
a pair of them at each episode. Each agent is equipped with a com-
munication matrix 𝐶𝑛 ∶ |𝒢 | × |ℳ| → ℛ, where 𝒢 is the goal space and
ℳ is a message space, where we consider that both spaces are dis-
crete (we discuss in Section 3.2.8 an extension to continuous spaces).
Each row of matrix 𝐶𝑛 corresponds to a different goal 𝑔 of the agent
and each column to a different message 𝑚. All values of the tables
are initialized with zeros (line 3). Communication is asymmetric: at
the beginning of the goal-coordination round one agent is randomly
chosen to be the leader and the other the follower (lines 8 and 9),
therefore ensuring that each agent takes both roles across episodes.
In what follows we employ underscore 𝑙 to denote properties of the
leader and underscore 𝑓 for the follower. When an agent is the leader,
the entries of its matrix answer the question: “What reward do I ex-
pect in this episode if I transmit message 𝑚 when I have goal 𝑔? ”.
When an agent is the follower, the question is: “What reward do I
expect in this episode if I choose goal 𝑔 when I receive message 𝑚?
”. Thus, an agent maintains a single matrix that it employs both as a
leader (to infer a message given a goal) and a follower (to infer a goal
given a message).

The leader first samples a goal 𝑔𝑙 according to its own goal sampling
strategy, 𝒟𝑙(𝒢 ) (line 10), and, then, transmits the message 𝑚𝑙→𝑓 cho-
sen using a softmax over the corresponding row of 𝐶𝑙 (line 11). The
follower receives message 𝑚𝑙→𝑓 and applies a softmax on the cor-
responding column 𝐶𝑓 to pick its own goal (line 13). After playing
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several episodes every agent updates its matrices to reflect the av-
erage reward for that specific goal/message association computed
on the batch of collected episodes collected (lines 20-29). Note that
during an episode the leader and follower may be pursuing different
goals, so although they experience the same episode their rewards
may differ. To ensure that the matrix updates are not too quick for an
agent to adapt its policy, we employ an exponential moving average
update function with update rate 𝛼 (line 32). We illustrate a single
round on the right of Figure 3.12. We should emphasize that agents in
the Goal-coordination game are maximising their individual rewards,
conditioned on goals that may differ and without access to the obser-
vation, goal, action and reward of others. The agents may successfully
communicate, in the sense that they coordinate their goals, but will
not be rewarded if their policies cannot achieve them. Vice versa, they
may succeed in an episode even if they don’t communicate meaning-
fully.

3.2.7 Empirical results

Setup

We study the Dec-IMSAP in the Cooperative landmarks environment
that we implemented using Simple Playgrounds [350]. This 2-D envi-
ronment, illustrated in Figure 3.13, consists of a room with 𝐿 = 6 land-
marks on its walls and two agents that receive continuous-valued ob-
servations about the distance and angle to all landmarks and other
agents. They can move by performing discrete-valued actions that
control their angular velocity and longitudinal force. We consider
navigation tasks where agents need to reach different landmarks and
define goals as vectors of dimension 𝐿 that are either one-hot or two-
hot, the former corresponding to individual goals and the latter to
cooperative. Formally, 𝑔 = [𝑥1, ⋯ , 𝑥𝑙],∑𝑙[𝑥𝑙] ∈ [1, 2] where 𝑥𝑙 = 1 indi-
cates that landmark 𝑙 needs to be reached by at least one agent for
the goal to be achieved and landmarks are indexed starting from the
white one and continuing clockwise (we provide the complete list of
goal encodings in Appendix A.6.1, alongside a formal definition of the
observation and action space). An episode finishes for an agent once
it receives a reward or a time limit is reached. Then, it waits for others
to also complete their episode before a new one starts. We illustrate
an example in Figure 3.13: if the blue agent samples goal [100000] and
the green [100100], then: a) if blue navigates to the white landmark
and green navigates to the purple landmark the episode succeeds for
both agents b) if blue navigates to the blue landmark and green to the
white landmark then the episode succeeds for the blue agent. Each
agent learns a goal-conditioned policy using PPO with a feedforward
policy and uniform goal-sampling distribution 𝒟(𝒢) (We provide the
values of all agent hyper-parameters in Appendix A.6.2). To investi-
gate the effect of using more complex intrinsic motivation mecha-
nisms, in Appendix A.6.5 we replace uniform sampling with learning
progress [250]. We have also studied a baseline that uses a recur-
rent policy in Appendix A.6.5 to investigate whether memory can help
agents coordinate.
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6 Figure 3.13: The Cooperative landmarks environ-
ment consists of a room with two agents and six
landmarks, indicated as colored rectangles. Tasks
are formulated as landmarks the agents need to
navigate to. During training, the agents sample their
own goals that can be individual or cooperative, as
the ones chosen by the blue and green agents re-
spectively. An episode may succeed for one agent
and fail for the other, the outcome depending on
the actions of both.

We introduce hyper-parameter 𝛽 for controlling the relative impor-
tance between independent and cooperative goals by dividing re-
wards for individual goals by 𝛽 . We do so to model the benefits of
cooperation: outcomes that require cooperation often bring larger
rewards than outcomes easily solved by a single agent (for exam-
ple catching a big animal is more rewarding than catching a small
one [383]). We set 𝛽 = 2 here and study the effect of this hyper-
parameter in Appendix A.6.5. To study the effect of environmental
complexity, we performed experiments with a smaller environment
(𝐿 = 3) in Appendix A.6.5.
In Section 3.2.7 we evaluate the role of goal alignment by designing
baseline goal-sampling strategies for different levels of it. For a given
𝑥% desired level of alignment, each agent samples its own goal using
𝒟(𝒢), but in 𝑥% of the trials we interfere in the sampling procedure
and externally provide the agents with the same goal. Therefore, 0%
alignment corresponds to autotelic agents sampling their own goals
independently of the other at each episode and 100% alignment cor-
responds to a centralized goal-selection mechanism where a a goal
is first sampled externally at the start of each episode and then pro-
vided to both agents (similar to the method used by [359]). We eval-
uate 0%-aligned (also referred to as independent), 50%-aligned and
100%-aligned (also referred to as centralized). We also evaluate a
common method in MARL that follows the centralized training with
decentralized execution paradigm (CTDE) [372], where every critic has
access to all goals, actions and observations of the group. We refer
readers to Appendix A.6.3 for an illustration of how these methods
differ in terms of the information available to each agent.

Finally, in Section 3.2.7 we evaluate the ability of our proposed algo-
rithm, the Goal-coordination game to reach the performance of the
centralized baseline and provide insights into how alignment and per-
formance co-evolve.

The role of alignment

We have hypothesized that agents not aligning their goals during
training will not master cooperative goals, as they will collectively
pursue them rarely and receive a noisy training signal as the goals
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Figure 3.14: Comparison of baselines with different levels of alignment and the Goal-coordination game in terms of performance during
evaluation (Left) and during training (Right). We present IQM values with stratified bootstrap confidence intervals computed over 20 seeds.

of others are not directly observable. We now examine this hypoth-
esis by comparing the performance during evaluation and training
trials between groups of centralized, independent and 50%-aligned
agents in Figure 3.14. In addition to the collected rewards we monitor
alignment during training trials and the length of the episode dur-
ing evaluation trials, where shorter episodes indicate that the group
solved the tasks quicker. We observe that ensuring alignment during
training improves performance during evaluation. In particular, the
evaluation reward at the end of training is 0.8277±0.0436 for indepen-
dent, 0.9133 ± 0.0027 for 50%-aligned and 0.9166 for centralized. Simi-
larly for the episode length, independent requires significantly more
time than other methods. Our study of the smaller environment in Ap-
pendix A.6.5 showed qualitatively similar behaviors, with differences
between methods being less pronounced. Thus, alignment acquires
more significance as the environment becomes more complex. The
differences in performances are primarily due to cooperative goals;
lowering alignment does not have a big impact on the individual goals
(we confirm this in Appendix A.6.5, where we train and evaluate only
with cooperative goals and observe similar conclusions as in the cur-
rent setup but with more visible gap between methods).

As we discussed in Section 3.2.6, independent agentsmay fail because:
a) as they cannot observe the goals of others and may choose incom-
patible goals during a training episode, the reward signal does not
allow to discriminate between an infeasible episode and a feasible
episode where the agents acted sub-optimally b) a large part of the
training episodes is infeasible so the agents require more training
time compared to centralized. To find out which of the two is the
case we evaluated an additional method that we refer to as ”both-
goals”: agents sample their goals independently but we provide both
of them to each agent. In this way, the agent can learn which combi-
nations of goals are incompatible and, thus, denoise the training sig-
nal. Our experiments showed that the both-goals method manages
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to detect incompatible goals but still performs similarly to indepen-
dent (we discuss this result in more detail in Appendix A.6.5). This
suggests that the reason why independent fails is the large number
of infeasible episodes and agrees with our observation that, when we
decrease the number of goals in the environment, which dramatically
reduces the probability of infeasible episodes, independent reaches
the performance of centralized (see analysis in the environment with
3 landmarks in Appendix A.6.5). A similar behavior to both-goals is ob-
served for the CTDE baseline, which achieves a slightly better perfor-
mance. As we explain in our analysis of this method in Appendix A.6.5,
including both goals in the value function enabled both CTDE and
both-goals to detect infeasible episodes. Under CTDE, agents also
exhibited more intra-episode adaptation, which may explain their su-
perior performance. The baseline with the recurrent policy, analyzed
in Appendix A.6.5, faces the same limitation and is more sensitive to
the noise introduced by infeasible episodes compared to feedforward
policies.

We should note that alignment is not sufficient for acting optimally
in our environment as, even if both agents choose the same coop-
erative goal they still need to coordinate on who goes where. How
can they do so with perfect success rate? We hypothesize that the
agents will find it challenging to adapt to the other’s behavior due
to the high level of partial observability in the environment: without
a recurrent policy and without observing the direction an agent is
moving to, inferring the sub-goal pursued by the other is difficult. In-
stead, a specialization strategy where the two agents reach an agree-
ment during training on who goes where (e.g. one agent always goes
to the left-most landmark and the other to the rightmost) requires
less effort. To detect this behavior, we search for specialization, i.e.,
policies that, when assigned with a cooperative goal during evalua-
tion, are biased to one of its landmarks. We quantitavely measure
specialization as the ratio of the episodes in which the agent went to
its preferred landmark when following a cooperative goal. For exam-
ple, if for goal [101000] an agent went 7 times to [100000] and 3 times
to [00100] this score would be 0.7. We observed that specialization
correlates with alignment: independent specializes by 0.72 ± 0.0452,
50%-align by 0.8066 ± 0.0537 and centralized by 0.92 ± 0.083 (see Figure
A.33 in Appendix A.6.5 for an illustration of these results) .

Learning to align goals

We have established that alignment is an efficient strategy for solv-
ing the Dec-IMSAP. To investigate whether it can be achieved without
introducing centralization, we now turn to the evaluation of our pro-
posed method for coordinating goals through communication, the
Goal-coordination game, that we described in Section 3.2.6. We ob-
serve that,in Figure 3.14, the evaluation reward for the Goal-coordination
game at the end of training is 0.9144 ± 0.0044. We also observe that
early in training (time step 66 ⋅ 105) the Goal-coordination game col-
lects less rewards than centralized. Similarly for the episode length,
the Goal-coordination game is initially slower than centralized but at
the end of training reaches its speed and surpasses independent and
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Figure 3.15: Evolution of the matrices of the Goal-coordination game early (left), in the middle (middle) and at the end of training (right): Rows
correspond to goals, with individual goals assigned to the first 6 rows, columns correspond to messages and the intensity of a cell indicates
the confidence in a goal-message association. The green arrow highlights communication that leads to goal alignment (both agents pursue
goal [001010]) and the red communication that leads to the ”risky follower” behavior (agent 0 pursues goal [000001] while agent 1 pursues
goal [010001]).

50%-align. Next, we take a deeper look at its dynamics to understand
these behaviors. In particular, we study the update matrices at early
and later stages of training to understand why performance starts off
bad but then reaches the optimal value.

In Figure 3.15, we visualize the matrices for a simulation that differs
from the one in Figure 3.14 only in that 𝛽 is increased from 2 to 4.
As we discuss in Appendix A.6.5, increasing 𝛽 does not affect perfor-
mance but leads to interesting emerging behaviors that our study of
the matrices can reveal. As we described in Section 3.2.6, each agent
is equipped with a matrix mapping messages to goals and updates its
cells to maximize its individual rewards during training episodes. The
rows of the matrices correspond to goals and the columns to mes-
sages. We make the convention here of plotting the individual goals
first, so the first 6 rows correspond to individual and the following
15 to cooperative goals. We have set the message size to a slightly
higher value than the number of goals, i.e., 𝑀 = 30. As we show in
Appendix A.6.5 having more messages than goals facilitates training
by decreasing the probability that the matrix updating will get stuck.
Rows and columns where we can find a single cell with higher inten-
sity than others indicate a converged goal-message association. We
can detect alignment by tracing if the goal-message associations of
the two agents agree. We observe that, early in training, the agents
have low confidence for most associations and alignment has not
been achieved. By the middle of training, however, the two matri-
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Figure 3.16: Co-evolution of alignment and rewards
for different goals during training using the Goal-
coordination game. The top-left plot corresponds to
an individual goal and the rest to cooperative ones.

ces are almost identical (follow the green arrow for an example of
communication leading to aligned goals). Looking at the matrices in
Figure 3.15 we can see that not all goals are aligned. This is because
in some cases (see the red line for an example) the leader samples
an individual goal that the follower interprets as a cooperative one.
This ”risky” behavior is useful for the follower, as cooperative goals
are more rewarding than individual ones. If the message received
by the follower convinces it that the leader is pursuing an individual
goal, the follower might have interest to pursue a cooperative goal
compatible with it, which will lead to maximum reward. In a daily life
analogy, if your housemate tells you they will buy pasta for tonight
(their individual goal), you may buy pasta sauce (a cooperative goal
based on your expectation that the other will fulfill its individual goal)
instead of rice (a different individual goal).

A challenging feature of the Goal-coordination game is that the ma-
trices and policies are updated simultaneously. This can lead to a
chicken-and-egg problem: the matrix updates may fail even if the
goal-message association is correct because the policy has not man-
aged to solve a goal. Or the policymay struggle to solve goals because
of bad goal-message associations that lead to episodes infeasible to
solve. In Figure 3.16 we monitor the co-evolution of alignment and re-
wards during training for a random subset of the goals. We observe
that, for cooperative goals, rewards and alignment are highly corre-
lated with improvements in one driving improvements in the other,
while, for individual goals, rewards are maximized without requiring
alignment.

3.2.8 Discussion

Wepresent a new problem for formalizing intrinsically-motivatedmulti-
agent goal exploration in a decentralized training paradigm, Dec-IMSAP,
and propose an algorithm for solving it, the Goal-coordination game.
We empirically observe that shared intentionality, which we measure
as alignment of cooperative goals during training, plays an important
role in a group’s ability to solve a wide diversity of tasks. Aligned
agents do not only get the highest rewards but also do so quickly.
We also show that, under the Goal-coordination game, alignment
emerges without being explicitly rewarded and groups reach equal
performance to a centralized setting that guarantees alignment. We
observed that groups with higher alignment solve the tasks by spe-
cializing instead of monitoring and adapting to others, which, as has
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been observed in previous MARL studies [152], is a behavior challeng-
ing to emerge unless explicitly rewarded.

We have adopted a descriptive rather than normative approach, com-
mon in the study of open-ended learning [9, 39]. Our aim was to get
groups of agents that learn a maximally diverse behavioral repertoire,
but observed the emergence of behaviors such as the risky follower.
Whether such behaviors are desirable or not, depends on the appli-
cation at hand.

Our study of the Goal-coordination game is limited to populations
of two agents and discrete message and goal spaces. Extending it to
larger groups is important for scaling up its applicability. We hypothe-
size that in such settings specialization will no longer lead to optimal
performance and that the goal-conditioned policy will need to be ex-
tended by conditioning it on messages and introducing recurrency to
equip agents with memory [183]. Also, having shown that increasing
environmental complexity increases the importance of alignment (by
comparing environments with different numbers of landmakrs), we
believe that an interesting extension of this work would be to test our
approach in a more complex, multi-agent environment like Grafter
[384]. To extend the Goal-coordination game to continuous message
and goal spaces, we can adopt approaches based on energy-based
models employed in previous works [385]. Finally, while our empir-
ical study considers a pre-defined goal space, we should note that
this is not necessary for autotelic agents who can in general learn
their own goal representation [144]. We envision studies of the Goal-
coordination game where both goals and messages emerge (to study
for example language evolution [386, 387]).

We believe that the Dec-IMSAP, can be of interest in real-world scenar-
ios such as robotics for disaster rescue or extraterrestrial exploration.
It allows to consider a population of goal-conditioned RL agents that
learn how to achieve a wide diversity of cooperative tasks in a fully-
autonomous manner. In this way, a user could place agents (simu-
lated or robotics) in some environment and let them interact with-
out any supervision for a period of time. At the end of this training
phase, the agent population will have autonomously learned how to
achieve diverse individual and collaborative goals without any super-
vision and a human user will be able to benefit from these acquired
skills.

3.3 Chapter conclusion Summary

▶ Meta-training on a diversity of procedu-
rally generated multi-step hierarchical
tasks enable the emergence of collective
exploration strategies in group of decen-
tralized agents.

▶ Introducing communication in group of
autotelic agents enable to align their
goals, improving the efficiency of coop-
erative learning and exploration.

In this chapter, we explored how efficient cooperative exploration
mechanisms can be meta-learned as a response to variability in a
large distribution of environments.

In the first section, we examined the emergence of collective explo-
ration strategies in decentralized learning agents throughmeta-training
on procedurally generated task sequences. Our results reveal intrigu-
ing generalization capabilities, with agents adapting to longer tasks,
novel objects, and unseen dynamics beyond their training distribu-
tion. Finally, though this would require further work to be confirmed,
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the meta-learned agents seem to display a proto sub-goal selection
mechanism – akin to autotelic agents – switching what they explore
during the episode.

In the second section, building on these results, we explored how
communication could help a group of autotelic agents to explore
more efficiently by aligning their goals. We first showed that agents
that don’t align their goals (sampling them randomly) learn less ef-
ficiently. We then introduced a communication mechanism and de-
centralized training algorithm that result in ”emergent shared inten-
tionality” from the learning of a communication protocol being driven
only by the maximization of their own individual reward. Such emer-
gent shared intentionality enables agents to align their respective
goals, resulting in more efficient exploration and training.

A natural extension of this work would involve integrating communi-
cation into the framework from the first section (Sec.3.1) and analyzing
the meta-learned communication strategies. This could reveal com-
munication as a tool for sharing intentions, as seen in our second con-
tribution (Sec.3.2). Additionally, agents might use communication to
exchange information about their discoveries – for instance, sharing
details about functional combinations of objects –potentially paving
the way for proto-culture to emerge.

In fact, communication could also be used beyond mere goal align-
ment to encompass richer forms of information exchange during an
episode. For example, agents might share detailed strategies for solv-
ing tasks or collaborate more efficiently through nuanced signals. Ide-
ally, the communication would contain as little bias as possible (i.e.
no explicit goal etc.), but rather in a ”free form” – such as continuous
signals or continuous drawing [388]. This unstructured ”free form”
communication could enable the agents to potentially meta-learn
rich compositional signals or even a common complete ”language”.

While efficient exploration behaviors emerged in sec.3.1, they were
always incentivized by the agents’ expectation of a potential direct
reward from trying out some object affordances. In fact, we did not
seem to observe any exploration behavior that indicates truly curious
behavior – for example, behaviors only aimed to gain useful knowl-
edge on the rules of the current task without any direct reward for it.
More generally, further work could explore the meta-learning of more
general complex exploration strategies. We report in Sec.4.4 prelim-
inary work in this direction, showing the meta-learning of emergent
curious behavior directed toward gaining information without any di-
rect reward associated with it.
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4.1 Emergent kin selection of altruistic feeding
via non-episodic neuroevolution

Context
This contribution is the result of the visit from Max Taylor-Davies
(School of Informatics, University of Edinburgh, Edinburgh, Scot-
land) in the FLOWERS team. It is based on the eco-evolutionary
system introduced in Sec.2.1.

▶ Taylor-Davies, M., Hamon, G., Boulet, T., Moulin-Frier, C. (2024).
Emergent kin selection of altruistic feeding via non-episodic
neuroevolution. arXiv preprint arXiv:2411.10536.
Paper, Code

This paper got a long oral presentation at the International Confer-
ence on the Applications of Evolutionary Computation – evoApps
– 2025.

Kin selection theory has proven to be a popular and widely accepted
account of how altruistic behaviour can evolve under natural selec-
tion. Hamilton’s rule, first published in 1964, has since been experi-
mentally validated across a range of different species and social be-
haviours. In contrast to this large body of work in natural populations,
however, there has been relatively little study of kin selection in sil-
ico. In the current work, we offer what is to our knowledge the first
demonstration of kin selection emerging naturally within a popula-
tion of agents undergoing continuous neuroevolution. Specifically,
we find that zero-sum transfer of resources from parents to their in-
fant offspring evolves through kin selection in environments where
it is hard for offspring to survive alone. In an additional experiment,
we show that kin selection in our simulations relies on a combina-
tion of kin recognition and population viscosity. We believe that our
work may contribute to the understanding of kin selection in minimal
evolutionary systems, without explicit notions of genes and fitness
maximisation.

4.2 Evolving Reservoirs for Meta
Reinforcement Learning

Context
This contribution is the result of the master internship of Corentin
Léger co-supervised by members of the FLOWERS team (Clément
Moulin-Frier, Eleni Nisioti and me) and the MNEMOSYNE inria team
(Xavier Hinaut) at Inria.

https://arxiv.org/abs/2411.10536
https://github.com/maxtaylordavies/EcoJAX
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Figure 4.1: Learning curve on craftax [232] of our tran-
formerXL implementation (red) compared to base-
lines reported in the paper: recurrent neural net-
work (blue) and linear neural network (yellow).

▶ Léger, C., Hamon, G., Nisioti, E., Hinaut, X., Moulin-Frier, C.
(2024). Evolving Reservoirs for Meta Reinforcement Learning.
In International Conference on the Applications of Evolu-
tionary Computation (Part of EvoStar) (pp. 36-60). Cham:
Springer Nature Switzerland.
Paper, Preprint, code

This paper was presented at the International Conference on the
Applications of Evolutionary Computation (Part of EvoStar) 2024.

Animals often demonstrate a remarkable ability to adapt to their envi-
ronments during their lifetime. They do so partly due to the evolution
of morphological and neural structures. These structures capture fea-
tures of environments shared between generations to bias and speed
up lifetime learning. In this work, we propose a computational model
for studying a mechanism that can enable such a process. We adopt
a computational framework based on meta reinforcement learning
as a model of the interplay between evolution and development. At
the evolutionary scale, we evolve reservoirs, a family of recurrent
neural networks that differ from conventional networks in that one
optimizes not the synaptic weights, but hyperparameters controlling
macro-level properties of the resulting network architecture. At the
developmental scale, we employ these evolved reservoirs to facilitate
the learning of a behavioral policy through Reinforcement Learning
(RL). Within an RL agent, a reservoir encodes the environment state
before providing it to an action policy. We evaluate our approach on
several 2D and 3D simulated environments. Our results show that
the evolution of reservoirs can improve the learning of diverse chal-
lenging tasks. We study in particular three hypotheses: the use of an
architecture combining reservoirs and reinforcement learning could
enable (1) solving tasks with partial observability, (2) generating oscil-
latory dynamics that facilitate the learning of locomotion tasks, and
(3) facilitating the generalization of learned behaviors to new tasks
unknown during the evolution phase.

4.3 Open-source implementation of a
transformer-XL based RL agent.

Weprovide an open-source JAX [289] implementation of TransformerXL
[389] based agents trained with proximal policy optimization (PPO
[320]) in a reinforcement learning setup following the details of : ”Sta-
bilizing Transformers for Reinforcement Learning” from Parisotto et al.
[231]. The implementation is accessible at this link.

This code was used in our contribution Sec.2.2 and Sec.4.4.

We also report results on the challenging craftax RL environment [232].
In particular, without much hyperparameter search, our implementa-
tion beats the baseline presented in the original craftax paper, in-
cluding recurrent neural networks (RNN) based agents trained with
PPO (Fig.4.1). With a budget of 1e9 timesteps, we achieve over 3 seeds
a mean normalized return of 18.3% compared to 15.3% for PPO-RNN
according to the craftax paper. Notably, the implementation reaches

https://link.springer.com/chapter/10.1007/978-3-031-56855-8_3
https://arxiv.org/abs/2312.06695v2
https://github.com/corentinlger/ER-MRL
https://github.com/Reytuag/transformerXL_PPO_JAX
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the 3rd level (the sewer) and obtains several advanced advancements,
which were both not achieved by the methods presented in the pa-
per even when trained for ten times more interactions. In fact, when
trained over 10e9 timesteps, the RNN based agent achieved a mean
normalized return of less than 17.5%.

With a budget of 4e9 timesteps, our implementation achieves a nor-
malized return of 20.6 %, visits the 3rd floor (the sewer) a decent
amount of time and achieves several advanced achievements. We
report in appendix.A.7 the achievements success rate along training.
The instructions to reproduce these results are available in the code
repository.

The implementation takes advantage of JAX parallelization to speed
up training. The training of a 5 million parameters transformer on
craftax for 1e9 steps (with 1024 environments in parallel) takes about
6h30 on a single nvidia A100 GPU. The implementation also supports
multi-GPU training, achieving even higher speed.

4.4 Meta-learning curiosity through reward
maximization in a variable compositional
environment.

Context
We report in this section preliminary work conducted during the
thesis about the meta-learning of curious behavior. In particular,
this work is a direct follow-up of Sec.3.1, where we explore further
how additional variation in the environment can potentially lead
to curious information-seeking behavior.

As shown in our contribution Sec.3.1 and [184], agents can meta-learn
to explore the environment. However, in those works, themeta-learned
exploratory behavior is directed towards actions that might give some
reward or get the state of the environment closer to getting a reward.
In particular, they do not seem to display exploration actions that are
done only to get information and are not potentially rewarding (nor
bring the state of the environment closer to getting a reward). In this
work, we call ”information-seeking behavior” such exploration that
only aims at collecting information about the environment dynam-
ics.

Some works in meta RL displayed such information-seeking behav-
ior but often prespecified an exploration phase, often with its own
exploration policy separated from the exploitation policy [333, 334]
(and even in some cases [334] directly optimize the exploration pol-
icy to maximize information gain on the task). However, prespecify-
ing a fixed exploration period prevents the agent from autonomously
learning when to switch from exploration to exploitation and instead
imposes such a constraint on the task. In particular, this type of
technique might not be possibly applied to non-episodic continuous
episodes where there is often not a concrete notion of the beginning
of the task (but rather a continuous stream of new challenges and

https://github.com/Reytuag/transformerXL_PPO_JAX
https://github.com/Reytuag/transformerXL_PPO_JAX
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Figure 4.2: Overview of an episode of the ”recipe environment”. We follow a multi-trial episode framework as is common in meta-RL [182–184].
At the beginning of the episode the agent does not know anything about the recipe tree and has to explore. The agent can use its memory
component to also exploit past discoveries as the recipe tree does not change across the episode. We only add an additional switch of reward
location to add variability in the environment.

opportunities often with a blurry boundary between them). In ad-
dition, more complex environments and strategies might require an
adaptive switch of behavior between exploration and exploitation.

The objective of this work is to meta-learn information seeking explo-
ration strategies without prespecifying an exploration period.

4.4.1 Description of the task

The agent meta-learns a transformer-based policy, i.e. a policy map-
ping the full history of (observation, action, reward) tuples since the
start of the episode, to action. The agent is placed in a recipe envi-
ronment (Fig.4.2): a grid world with diverse objects of different colors
that can be picked and placed, as well as combined to create new ob-
jects. The rule specifying how two objects can be combined to create
a third one is called a recipe (in the form 𝐴+𝐵 → 𝐶). Multiple recipes
can be combined to form a recipe tree, as illustrated at the top of
Fig.4.2. Some recipes are rewarding while others are not. The recipe
environment, therefore, induces two different exploration challenges.
The first challenge consists in exploring a fixed recipe tree in order
to learn its structure (i.e. the set of underlying rules). The second
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challenge consists in finding which recipe is rewarding within a given
recipe tree.

In our experiments, at each episode, we first sample the colors of
the objects, a random recipe tree and a rewarding recipe and let the
agent interact with the environment for some time. At some point
within the episode, we switch the rewarding recipe, while keeping
the same recipe tree (Fig.4.2). Our objective is to study which type
of exploration strategy is learned in such a variable environment. In
particular, once the agent has found the rewarding recipe in the first
phase (i.e. solved the second challenge explained above), it might
have interest to continue seeking information about the recipe tree
structure (i.e. first challenge) in order to anticipate the switch to an-
other rewarding recipe.

We follow the multi-trial episode setting as is common in meta-RL
[182–184] with environment reset but memory propagation. We let
the agent meta-learn when to explore adaptively.

During a trial, we follow the reward structure used in [184], where the
agent gets a reward until the end of the trial when it has discovered
the rewarding recipe. Even though the agent has found the rewarding
recipe, for the rest of the trial the agent can still continue to interact
with the environment (and will continue to get the reward whatever
it does), potentially to explore further.

At the beginning of the episode, the agent does not know anything
about the recipe tree and has to explore, similar to our contribution
Sec.3.1. Taking advantage of its memory, the agent can meta-learn to
memorize the ”working” recipes and exploit them.

The agent observes the reward and therefore can know which recipe
is rewarding. We also add in the observation a binary flag telling if
the combination that was just tried is successful or not (potentially
helping the attention-based memory to spot useful observations in
the history).

Overall, the training setup is very similar to [184], but in a simpler
toy compositional environment and, most importantly, with an intra-
episode variability. Compared to Sec.3.1, we use a gridworld environ-
ment, removing the potentially hard sensorimotor aspect of the task
(and we add variability during the episode).

We use our open-source code for transformerXL with PPPO (Sec.4.3).

4.4.2 Results

We meta-train the agent on a diversity of generated recipe trees and
object colors and report the behavior of the agent tested on an episode.
In particular, we measure the cumulative amount of time the agent
has tried each combination of objects, indicating exploration and ex-
ploitation capabilities (for example, if the agent tries several times a
non-working recipe). We also measure the reward obtained by the
agent.
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Figure 4.3: Test episode of an agent that did
not meta-learn to perform curious information-
seeking behavior.Wemeasure the cumulative num-
ber of trials of each combination of objects, the dot-
ted lines are the ”non working” combinations while
the plain lines are the ”working” combinations. We
also report the reward obtained at each time step
(top). The agent effectively learns to explore (blue)
and exploit (purple) but does not use its ”free time”
to anticipate the change (green) and therefore has
to explore at the beginning of trial 3 (orange) loos-
ing potential reward. The first exploration phase
(blue) is not considered an information-seeking be-
havior as each try of combination might potentially
give reward.

First results without information seeking behavior. We report in
Fig.4.3 results with an agent trained with an infinite number of possi-
ble colors for the object; where curious information-seeking behavior
does not emerge. This ”failed” result is interesting to understand the
task and the behavior we expect. In fact, we see that the agent ef-
fectively learns to explore (as in our contribution Sec.3.1) and also
to memorize and exploit its discovery in later trials as in [184]. In
fact, the use of the memory allows the agent to directly combine the
rewarding recipe it has already found in the previous trials without
having to explore again.

However, after the switch of recipe, the agent explores again to find
the new recipe that is rewarding (orange in Fig.4.3). This is suboptimal
as the agent loses time and thus reward exploring again, while it could
have used its ”free” time (green in Fig.4.3) during previous trials (as
the recipes do not change across the switch and the agent has already
found the reward and therefore cannot get more).

The first exploration phase (blue in Fig.4.3) is not considered an information-
seeking behavior as each try of combination might potentially give a
reward.

Emergence of information seeking behavior. When trained with a fi-
nite number of possible colors (which might help the agent to build a
better representation), we observe in Fig.4.4 the emergence of information-
seeking behavior. In fact, the agent anticipates the change and ex-
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no
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Efficient
exploitation

after the
switch Figure 4.4: Test episode of an agent that meta-

learned to perform curious information-seeking
behavior.Wemeasure the cumulative number of tri-
als of each combination of objects, the dotted lines
are the ”non working” combinations while the plain
lines are the ”working” combinations. We also re-
port the reward obtained at each time step (top).
The agent effectively use its free time to perform
”information seeking behavior” (green) as this ac-
tion does not give any reward but allow the agent
to gain information that is useful to anticipate the
switch and exploit efficiently just after (orange).

plores during its ”free time”, allowing it to directly exploit just after the
switch (compared to the previous result Fig.4.3 which lost reward to
explore again). In particular, this exploration behavior (highlighted in
green in Fig.4.4) is always done after completing the rewarding recipe
in trial 2, i.e. in a phase when it’s not possible to get any additional
reward. The agent therefore effectively performs explorative actions
without getting any reward from them. However, this enables infor-
mation seeking about the general recipe tree structure, that can be
memorized and reused later on. Indeed, we see (pink in 4.4) that the
agent effectively exploits the information gained during its curious
information-seeking behavior.

Note that in both training setups presented above, the agent might
stumble on the non-rewarding recipes while searching for the reward-
ing one (before finding it) in the first exploration phase. In this case,
the agent memorizes it and does not have to rely on the information-
seeking behavior, which is the reason why we only showed episodes
displaying the other case.

These preliminary results show again the importance of environmen-
tal variability for the emergence of complex exploratory behavior. In
particular, we elicit a simple toy training paradigm enabling an effi-
cient use of ”free time” and leading to the meta-learning of curious
information-seeking behavior.

Further work could explore more variability in the episode (e.g. with a
switch happening randomly), as well as more general environmental
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dynamics to explore by the agent. This could lead to more general cu-
riosity behavior. In particular, once information-seeking behavior has
emerged it might be easier to transfer it to other harder tasks. There-
fore, introducing a curriculum of tasks could be an interesting future
direction, potentially ultimately leading to an agent capable of open-
ended curious exploration of the environment (constantly exploring
new possibilities). Further works could also explore how similar be-
havior could emerge from evolution, for example using fitness taking
into account satiety which has a similar structure as the reward used
here (with satiety leading to no more ”reward” from eating more).
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5.1 Summary of the thesis

As explained in the introduction, the goal of this thesis was to explore
mechanisms promoting open-ended dynamics in artificial systems. In
particular, we focused on the interactions between adaptive agents
and the environments, with a special emphasis on the feedback loop
they might induce, potentially leading to never-ending new adapta-
tions. The thesis studied how diverse environmental dynamics and
adaptive mechanisms, operating at multiple spatio-temporal scales,
can induce interesting phase transitions at the system level.

In chapter 1, we explored the emergence of individuality and proto-
evolutionary dynamics in an initially lifeless environment in the con-
tinuous cellular automata Lenia.

Quick summary chapter 1

▶ Applying diversity search algorithms to a
continuous cellular automaton enables
the discovery of artificial creatures dis-
playing features of sensorimotor agency
with interesting generalization abilities.

▶ Introducing mass conservation in a con-
tinuous cellular automata enablesmulti-
species simulations bootstrapping a
proto-evolutionary mechanism.

▶ In a first contribution Sec.1.2, usingmachine learning techniques
such as gradient descent, diversity search and curriculum learn-
ing we explored the parameters space of Lenia to find rules
leading to the systematic self-organization of macro-structures
with sensorimotor capabilities. In particular, the self-organized
macro individuals reacted to perturbations and changed direc-
tion without any central brain to take decision but rather from
the collective self-organization of its simple constituents. Fi-
nally, we observed interesting generalization capabilities to con-
ditions not seen during the search (such as different obstacle
shapes, new scale, noise, or multi-agent simulations) showing
promises for robust morpho-cognitive agents.

▶ In a second contribution Sec.1.3, we introduced an extension of
Lenia named Flow Lenia which added mass conservation in the
system. Mass conservation made it easier to find localized pat-
terns. Most importantly, the extension of the system allowed
for the coexistence of several localized rules in the system, en-
abling ”multi-species” simulations. In particular, the dynamic of
the system in the multi-species case showed emergent intrin-
sic proto-evolutionary dynamic, from the physics of the system
alone. This dynamic is highlighted by measuring evolutionary
activity metrics and displaying phylogenetic trees.

The first chapter, therefore, introduced the emergence of individual-
ity and adaptation mechanisms. From this point on, our contribu-
tions adopted a more classical setup featuring an embodied agent
with a brain, interacting with a well-separated environment through
predefined sensors and actuators. This change of paradigm, from a
so-called enactivist framework to a mechanistic framework (Sec X),
enabled to study in more detail the reciprocal interactions between
adaptive agents and their environment in Chapters 2 and 3.
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In chapter 2, we investigated the impact of the adapting agents on
the environment through niche construction. Niche construction ul-
timately alters environmental pressures, which in turn leads to new
adaptations, ultimately leading to eco-evolutionary feedback effects.

Quick summary chapter 2

▶ Large scale experiments showing the im-
portant effects of eco-evolutionary feed-
backs.

▶ Neuroevolution of efficient sustainable
behavior through physiological repro-
duction, without any explicit objective
being maximized.

▶ Different behavioral strategy coexisting,
elicited by isolation and behavioral tests
in ”lab environments”.

▶ Learning of collective eco-engineering
strategies with the emergence of agricul-
ture.

▶ Eliciting the conditions favoring the dis-
covery of agriculture.

▶ In a first contribution Sec.2.1, we highlighted the importance
of these eco-evolutionary dynamics by introducing continuous
long non-episodic simulations with hundreds of neuroevolving
agents foraging for spreading resources in a gridworld. We also
adopted an energy based reproductionmechanism, where agents
reproduce if their energy is above a certain threshold for some
time. This minimal criterion based reproduction departs from
traditional evolutionary algorithms maximizing an explicit ob-
jective or a fitness function. We reported strong coupling be-
tween agents and the environments, for example with the pres-
ence of Lotka-Volterra cycles. Interestingly, agents evolved sus-
tainable collective behaviors where they foraged locally with
parsimony allowing for the spreading of the resources. We hy-
pothesized that such behaviors evolved as a way to optimally
propagate a lineage, where future offsprings will benefit from a
sustainable maintenance of the resource stock.
A follow up of this contribution is introduced in Additional pa-
pers Sec.4.1, where we studied the emergence of altruistic behav-
ior in similar embodied simulations. In this contribution, agents
evolve altruistic feeding behavior towards their offspring, here
again as a way to improve the propagation of their lineage – in
line with kin selection theory.

▶ In a second contribution Sec.2.2, we explored more complex
niche construction by studying the emergence of agriculture
in groups of agents. In a gridworld with competing plants, we
studied how a population of reinforcement learning agents col-
lectively learn to promote the growth of a beneficial plant by
spreading its seeds, watering it, and removing the unwanted
plant. In particular, we explored the influence of both environ-
mental factors (e.g. the parameters of the plants growth) and
cognitive factors (e.g. how much the agent takes into account
the future) favoring the discovery of agricultural practices in a
multi-agent setting. We also highlighted specialization of the
agents in some cases, with some of the agents watering the
plants while some others planting seed (i.e. division of labor).

As highlighted throughout this chapter, niche construction and eco-
evolutionary dynamics can lead to significant variability within the
environment ( for example, in the availability of resources). This
high variability necessitates equally rapid adaptation mechanisms,
enabling agents to adapt over shorter timescales. We focused inmore
detail on these aspects in chapter 3.

In chapter 3, we explored the emergence of learning and explo-
ration as a response to environmental variability. In particular, we
controlled the environmental variability and studied how groups of
decentralized agents learn to collectively explore efficiently.

Quick summary chapter 3

▶ Meta-training on a diversity of procedu-
rally generated multi-step hierarchical
tasks enables the emergence of collec-
tive exploration strategies in group of de-
centralized agents.

▶ Introducing communication in group of
autotelic agents enables goal alignment,
improving the efficiency of cooperative
learning and exploration.
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▶ In a first contribution Sec.3.1 relying onmeta-reinforcement learn-
ing techniques with agents equippedwith recurrent architecures,
we studied how a group of decentralized learning agents trained
on a diversity of procedurally generated hierarchical task could
meta-learn cooperative exploration strategies. We showed that,
in this context, including single agent training episodes is effi-
cient at mitigating issues with credit assignment that was oth-
erwise leading to free-riding strategies. Interestingly, the meta-
learned policies generalized to new settings not seen during
training such as new objects, longer and more complex tasks
and new tasks. Finally, the learned behavior seem to display
a proto sub-goal selection mechanism switching what they ex-
plore during the episode.

▶ In a second contribution Sec.3.1, we pre-equipped agents with
this autotelic (goal selection) mechanism and studied how com-
munication could enhance the learning efficiency by aligning
the agent’s respective goals. In particular, we first showed that
non-aligned goals (for example through random goal selection)
lead to suboptimal behavior. We then introduced a communi-
cation mechanism and decentralized training algorithm that re-
sulted in ”emergent shared intentionality” [338] from the learn-
ing of a communication protocol being driven only by the maxi-
mization of their own individual reward. Such emergent shared
intentionality indirectly enabled agents to align their respective
goals, resulting in more efficient exploration and training.

▶ We introduced in additional paper section Sec.4.2 a work study-
ing the meta-learning of parameters of a cognitive architecture
allowing downstream fast adaptation to a distribution of task.
We also introduced, in Sec.4.4, preliminary work on the meta-
learning of information seeking exploratory behavior – explo-
ration to gain information about the structure of the environ-
ment without any direct reward for it. This behavior allows to
anticipate potential future changes in the environment during
the lifetime of the agents.

Throughout this thesis, we explored emergent complexity and phase
transitions across different scales. We embraced a bottom-up ap-
proach both in each and across contributions where the resulting dy-
namics from simulations were often used as the basis for the next
ones to focus on more specific mechanisms in a controlled way. In
particular, we went from the emergence of individuality and proto-
evolutionary dynamics; to the study of complex agent-environment
interactions with niche construction and eco-evolutionary feedbacks;
to the emergence of learning, exploration (and communication). We
recall in Fig.5.3 an overview of the general structure and logic of the
thesis.
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5.2 Perspectives and limitations of the
contributions.

For specific limitations and perspectives of individual contributions,
we refer to the discussion sections within each corresponding section
and chapter. We will now bring the pieces together in an attempt to
synthesize a larger picture on how to design artificial systems featur-
ing open-ended dynamics.

We start by discussing perspectives focusing on specific architectural
components:

▶ Environment design, (Sec.5.2.1)
▶ Agent design, (Sec.5.2.2)
▶ Multi-agent interactions (Sec.5.2.3).

We then provide a general discussion on emergent complexity and en-
gineered biases in Sec.5.3.1, the challenges ofmeasuring open-endedness
in Sec.5.3.2, and finally how our work could shed light on theories
about the real world in Sec.5.3.3.

5.2.1 Environment design

The neural network architectures used in chapters 2 and 3 demon-
strated complex adaptive capabilities across various scenarios. How-
ever, as we have seen, the complexity of evolved or learned behav-
iors strongly depends on the complexity of the environment in which
adaptive agents operate. Similar results can be observed in other
works showcasing the generalist capabilities of recurrent neural network-
based architectures [44, 184, 390].

In this context, we consider that achieving generalist agents in AI
is not only a problem of designing efficient cognitive architectures,
but also –and perhaps more importantly– of designing environments
whose dynamics are complex enough to support the open-ended
adaptation of artificial agent populations.

In this section we will discuss what we think are the main building
blocks of environments and training paradigms able to foster open-
ended adaptation.

▶ ”The issue of open-ended evolution can
be summed up by asking under what
conditions will an evolutionary system
continue to produce novel forms.” [391]

▶ ”One perspective on the conditions for
open-ended evolution or open-ended
learning is thus to consider a rich
enough environment which provides an
open-ended sequence of problem” [392]

Complex spatiotemporal dynamics. As seen in chapter 2, environ-
ments with inherent spatiotemporal dynamics can be a source of com-
plexity through the interaction with adapting agents. Environments
with richer and more varied dynamics provide greater opportunities
for agents to develop complex adaptations. On Earth, for example,
both the Cambrian explosion and the emergence of agriculture have
been hypothesized to be driven by sudden environmental changes
[325, 393]. While we introduced spatial variations of resource gener-
ation in our eco-evolutionary contribution (Sec.2.1, with a gradient of
resource generation rate along an axis), enriching the environment
with temporal variations could provide richer ground for complex
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Figure 5.4: Compositional dynamics:combining ele-
ments to produce new ones. Simple compositional
dynamic of the form A+B→C : combining a rock and
a stick to build an axe.

adaptations and dynamics. This could imply seasonal cycles as in our
contribution on agriculture (Sec.2.2), inducing e.g. complex plant life
cycles and favoring the discovery of resource conservation strategies
to maintain a stock during the ”winter season”. Such spatiotempo-
ral dynamics can operate at multiple scales, e.g. smaller ones such
as the alternation between days and nights (e.g. resulting in differ-
ent adaptations in diurnal vs. nocturnal animals) or larger ones such
as climate changes (which caused massive mass extinctions on Earth
[394] and potentially drove early human evolution [394]).

Compositional dynamics. In Sec.3.1, we introduced compositional
dynamics in our environments : the possibility to combine elements
to produce new ones (as displayed in fig.5.4). Compositional dynam-
ics provide opportunities for discovery during an agent’s lifetime, as
demonstrated in our contribution 3.1 and other works [184, 251, 390,
395]. Introducing such dynamics into eco-evolutionary simulations
like those in Sec.2.1 could enable richer forms of exploration and
knowledge accumulation, particularly when agents can learn from
each other’s discoveries (see Sec.5.2.3 for more details on its potential
for cultural evolution to emerge).

Compositional dynamics are even more interesting when they allow
building useful tools or functional machines. In this case, agents
might have interest to evolve or learn complex exploration strategies,
i.e. in the form of intrinsic motivations, as a way to favor relevant dis-
coveries (See Sec.3.1 and Sec.4.4). Such discoveries on how to combine
environmental elements to create new ones might provide important
benefits, e.g. for niche construction. Ultimately, this drive to explore
and try to build functional objects could potentially favor some sort
of complex reasoning on how to compose objects. The compositional
dynamics could be pre-encoded in the simulation as a list of recipes
(𝐴 + 𝐵 → 𝐶 , as e.g. in [232, 396, 397]) but could also come from the
physics of the system or self-organization dynamics. For example, an
accurate 3D physical world could allow complex emergent composi-
tional dynamics, e.g. allowing to make a weapon by sticking a stone
in a stick with rope.

Open-ended environments. Ideally, compositional dynamics would
be open-ended enabling a never-ending complexification and diver-
sification of technological tools being built. This would therefore re-
quire a dynamic that is different from just hardcoding a list of recipes,
a limitation of most current works [232, 396, 397].

In the context of environments that enable the open-ended complex-
ification of ”technology”, the recent work JaxLife [50] introduced pro-
grammable robots in a gridworld environment with resource growth
dynamics resembling the environments used in our contribution Sec.2.
In this system, the agents can learn to program the robots to perform
potentially useful tasks. The programmable robots are Turing com-
plete, meaning that they are capable of universal computation. This
high expressivity provides a rich ground for more and more complex
programs to be learned. In particular, the paper is interested in how
high-level open-ended culture and technologies can be evolved in
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1: World models takes as input a state (often an im-
age) and an action to output the next state. 𝑓 ∶
𝑆 × 𝐴 → 𝑆

Figure 5.5: Autoverse: cellular automata based envi-
ronment. Top: example of rule. Bottom: example of
dynamic. Figure from [401].

such an environment. Though the programmable robots are quite ab-
stract and high-level, the rest of the environment dynamics, agents’
reproduction, and evolution share similar principles as in our con-
tribution in Sec.2. In particular, they use long non-episodic simula-
tions, potentially allowing complex eco-evolutionary dynamics. They
notably highlight strong niche construction dynamics.

Recently someworks advocated for the need for Darwin complete sim-
ulators: ”environmental encoding that can create any possible learn-
ing environment” [3]. Such simulators would enable an open-ended
task space, albeit requiring a potentially costly search within this en-
coded space to find interesting environments.

Towards this goal of a general environment simulator, several works
proposed to use neural network based world models1 [398, 399]. By
being guided by language, and trained to generate a huge diversity
of environments from which elements might be recombined, these
models could allow generating tasks in an open-ended way. Espe-
cially, these models are often trained on real world physical envi-
ronments and therefore could also provide environments with real
physics (but are not limited to) which might be useful for some appli-
cations such as robot control. However, current models are limited
to short-term dynamics, few interactions, and single-agent scenar-
ios, precluding the complex reciprocal interactions between environ-
ments and agents discussed in this thesis. They might, however, still
be interesting toward the training of generalist agents and will surely
improve over the years.

Other works use large language models to open-endedly generate
the code or assets configurations of environments in generic physical
simulators [46, 65]. Though their open-endedness might be limited
by the physical simulator capabilities, further works might use large
language models to code any environment from scratch in a program-
ming language.

Complex self-organizing systems as environment dynamics. Another
potential candidate for environments that have the potential for open-
ended dynamics are self-organizing complex systems such as cellu-
lar automata. In particular, some CA like the game of life have been
shown to be Turing complete [400], hinting toward their potential for
simulating any dynamic.

In addition, cellular automata or reaction diffusion can easily intro-
duce local compositional dynamics. This can be implemented through
hardcoded rules converting a mix of elements/chemicals into others,
which is classic in reaction diffusion. But it can also be an emergent
phenomenon of such complex systems where self-organization lead
to the composition of structures, e.g. assembling two patterns to-
gether that results in a more complex emergent macro structure. Re-
cent work has shown the capabilities of cellular automata in param-
eterizing a large space of environments [401], a promising candidate
towards a potentially general environment design framework. Our
contribution in chapter 1 and especially Sec.1.3 with ”multi-species”
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Figure 5.6: Xland-minigrid procedural generation
of tasks, including compositional dynamics. Figure
from [390].

Figure 5.7: Xland procedural generation of tasks and
environments. Fig from [44].

simulations could provide rich parametrized environments with com-
plex dynamics displaying a variety of interacting environmental ele-
ments, each with their own properties and potentially adapting along
the simulation.

Complex systems like cellular automata are very promising to induce
eco-evolutionary feedbacks as small changes can have a huge (poten-
tially structured) impact on the whole environment. This allows the
agents to meaningfully impact the dynamics of their environment, po-
tentially resulting in high empowerment. Recently, [402] studied how
a population of RL agents, situated in a CA simulated forest fire dy-
namics, can collectively learn how to harvest trees in order to mini-
mize fire propagation while maximizing the number of trees to collect
resources. The environmental dynamics in our eco-evolutionary sim-
ulations (Sec.2.1) and emergent agriculture (Sec.2.2) works are in fact
cellular automata (and to some extent, any grid-world environment
based on local Markovian interactions between neighboring cells).
However, this complex system dynamic can also lead to instability
in the environment, potentially favoring resource or population col-
lapse.

The fact that self-organizing local rules are often simple, yet lead to
great complexity, is also interesting for agents meta-learning to adapt
in context. In fact, by being exposed to a variety of rules, the agents
mightmeta-learn to infer the rule by interacting with the environment
(as observed in [184]). Agents that can infer environmental rules may
gain advantages by exploiting these patterns. However, due to the
complex dynamics of such systems, predicting the long-term dynam-
ics from the rule remains challenging. Another way for the agents
to adapt in context is to memorize useful patterns discovered during
their lifetime (without inferring the underlying rule), potentially build-
ing an open-ended repertoire of useful patterns. In addition, discov-
ering interesting patterns and how to make them might necessitate
effective exploration mechanisms in the agent.

Emergent dynamics vs procedural generation of a diversity of tasks.
In this thesis, we explored the variability of the environment under
two different approaches. The first one is through emergent dynamics
as in Sec.1.3 and Sec.2.1: the environmental variation comes from the
environment ”evolving” through its dynamics and the action of the
agents, in particular through long non-episodic simulation in rich en-
vironments. The other approach, used in Sec.1.2 and Chap.3, relies
on procedurally generated episodic (often short-term) tasks from a
parametrized simulator.

Procedural generation of tasks is mainly used in machine learning
to train generalist agents [44, 45, 390, 403]. This method is easier to
control; the experimenters can easily set the task as they intend and
prespecify variations. This enables researchers to test specific mech-
anisms while exposing agents to controlled tasks. However, this in
turn potentially limits the space of tasks to the space that was ”imag-
ined” by the experimenter and thus can be limiting and not totally
open-ended.
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Figure 5.8: Arc reasoning benchmark example. The
agent is exposed to a handful of transformation ex-
amples (input and corresponding outputs, shown
on the left and right sides of the arrows, respec-
tively). Informed by these examples, the task is to
infer the output (question mark) of a novel input.
This requires strong few-shot generalization abili-
ties, similar to IQ tests. [405]

Recent works with Darwin complete simulators (or at least very gen-
eral simulators), allow procedural generation of a very large reper-
toire of environments. However, the control over the training tasks
is then limited and also necessitates exploring a very large space to
find interesting environments. In particular, works often use unsuper-
vised environment design (UED) [195, 196, 199] techniques to explore
this vast space and find relevant training environments for the cur-
rent capabilities of the agents.

On the other hand, artificial life works sometimes use emergent dy-
namics as the driver of variability in the environment, using a sin-
gle environment whose dynamics generate all the variations [50, 201].
Having a single environment for a long time allows for long-term dy-
namics to emerge, such as eco-evolutionary dynamics and culture
accumulation. This also allows for environments that would have
been hard to design, which rather emerge from the discoveries made
by the agents themselves. With rich enough environmental dynam-
ics, the environment can lead to open-ended dynamics by allowing
never-ending novel states and opportunities.

However, the initial richness of the environment dynamic might be as
well limiting. In addition, as the environment is not reset, the envi-
ronment is therefore more unstable and can lead to collapse espe-
cially as incremental change can accumulate. Also, adapting agents
are known for their abilities to exploit flaws in the design of environ-
ments (especially in RL) [404], which is hard to predict when designing
a single complex environment.

Techniques used in the search for parameters in procedural gener-
ation of environments such as unsupervised environment design or
quality diversity could also be applied to find environments support-
ing long-term rich dynamics. Exploring the space of environments
in a Darwin complete simulator could in fact be guided by certain
metrics of the entire long simulation dynamics such as evolutionary
activity, complexification of the environment and/or behavior of the
agents. However, finding relevant metrics of such quantities reveals
to be challenging, especially in environments with emergent complex-
ity that was not predicted and is constantly changing (see Sec.5.3.2 for
more details on the challenges of measuring complexity and open-
endedness). Exploring in this manner, however, requires running long
simulations for each environment dynamic tested, leading to a poten-
tially huge computational cost.

As done throughout this thesis, we also believe that isolating cer-
tain mechanisms to more profoundly understand the environmental
factors favoring the emergence of specific behaviors is important in
comprehending the building blocks necessary (or useful) for creating
large-scale complex environments that would lead to open-ended
dynamics. In particular, toward the emergence of generalist agents,
further work should be done on trying to understand the conditions
for general adaptation and in particular general curiosity to emerge.
For example, we started to elicit in preliminary work Sec.4.4, simula-
tions displaying first hints of the emergence of information-seeking
behavior as a way to deal with variability during the episode. Finding
environments leading to the emergence of general reasoning is also
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an interesting direction, for example with RL environments inspired
by the ARC benchmark [405, 406] (Fig.5.8).

We refer to section 5.3.1 for additional insights on the balance between
engineered bias and emergent complexity.

Curriculum and serendipity. Ideally, environments should facilitate
a progressive curriculum of adaptation or discovery. However ”intel-
ligent” it can be, any agent will have trouble to adapt if the gaps in
difficulty between successive environmental challenges are too large
(this is the case for humans too). For example, if discovering a new
tool requires precisely combining multiple rare resources in a specific
sequence, agents may never bridge this gap through random explo-
ration alone. Instead, environments should offer intermediate step-
ping stones of increasing complexity. Ideally, environments should
foster serendipity, enabling agents to randomly discover mechanisms
that they can subsequently learn to exploit. This is especially true
as current adaptation mechanisms lack proper efficient exploration
mechanisms, for example in reinforcement learning or evolutionary
algorithms where exploration relies on random low-level actions or
mutations. However, advances in intrinsically motivated agents [134]
and emergent meta-learned exploration (Sec.3.1, [44, 184]) could pro-
vide useful exploration mechanisms to overcome this limitation to
some extent. In particular, intrinsically motivated agents can produce
their own curriculum, for example through exploration strategiesmax-
imizing learning progress [407, 408].

Scaling environments. Finally, recent advances in both hardware
and software have enabled the expansion of environmental simu-
lations and training processes to unprecedented scales. In partic-
ular, most of the works presented in this thesis used the JAX frame-
work [289] allowing for the simulation of large-scale grids with a huge
number of agents. Parallelizing environments on GPU enabled huge
speedup in reinforcement learning and evolutionary algorithms [103,
174, 290]. This enables the simulation of complex multi-scale adapta-
tions on a diversity of environments, such as combining RL and evo-
lutionary algorithms (as e.g. in our additional contribution Sec.4.2).
Future research should prioritize the development of efficient, large-
scale environments. These environments could enable reinforcement
learning and evolutionary algorithms to leverage massive paralleliza-
tion and computational resources, following the successful scaling
patterns seen in supervised learning.

5.2.2 Agent design

Throughout this thesis, we explored how artificial agents can adapt
to varying environmental constraints and opportunities at different
scales. Chap.1 adopted a radical enactivist view focusing on low-level
adaptation at proto-morpho-cognitive (Sec.1.2) and proto-evolutionary
(Sec.1.3) scales. Chap.2 and 3 switched to a more standard mecha-
nistic view focusing on intergenerational evolutionary (Sec.2.1) and
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2: Echo state neural networks(ESSN) [411] are a type
of recurrent neural network: ”The main idea is (i)
to drive a random, large, fixed recurrent neural net-
work with the input signal, thereby inducing in each
neuron within this ”reservoir” network a nonlinear
response signal, and (ii) combine a desired output
signal by a trainable linear combination of all of
these response signals.” [412]

individual-life developmental (Sec.3.1 and Sec.3.2) scales. In this sec-
tion, we discuss limitations and perspectives related to these agent
design choices.

Fixed architecture. The works we presented in chapters 2 and 3 use
a fixed neural network architecture which can potentially limit their
opportunities to increase in complexity. Research in neuroevolution
has explored evolving both neural architectures and their connec-
tion weights simultaneously [101, 409]. This allows networks not only
to optimize their parameters, but also to structurally adapt to new
challenges, providing greater flexibility than weight evolution alone.
Building on this idea, some researchers have developedmeta-learning
approaches that learn the rules for generating and growing neural
network structures – inspired by the biological development of the
brain – known as neural developmental programs [56, 410]. Notably,
they also propose a framework in which the architecture evolves and
self-organizes dynamically during the lifetime of the agents, depend-
ing on their interactions with the environment. This approach, termed
lifelong neural developmental programs [57], emphasizes continual
learning and structural adaptation. Our additional work Sec.4.2,follows
the idea of evolving the architecture andmeta-learns aminimal parametrized
encoding of the macro-level properties (such as the amount of con-
nectivity or recurrency) of an echo state neural network 2 [411], which
is randomly generated at each instance. The meta-learned parame-
ters are optimized so that every echo state neural network generated
with these parameters allows versatile fast adaptation through RL on
a diversity of tasks.

Another recent and promising direction in the adaptive generation of
agent’s cognitive architectures relies on LLM-based code generation.
This approach enables the flexible synthesis of entire controllers and
even learning algorithms in programming language space (which is,
by essence, an open-ended design space) [413, 414].

Brain-body coevolution. Another limitation of our works in chapters
2 and 3 is the fact that the bodies of the agents are fixed and identi-
cal. This might also limit the opportunity for the agents to adapt in
different ways. In particular, through the concept of morphological
computation [240, 415] – the fact that the body also participates in
the cognitive ”computation” or reduces the complexity of the control
– Pfeifer et al. shed light on the central contribution of the body in
cognition (in line with the enactive view). Brain-body coevolution is
both a historical and currently active topic in ALife [416–421].

Allowing the bodies of the agents to evolve across generations or de-
velop through individual lifetime could introduce a greater diversity
of capabilities and morphologies, enriching the interactions between
agents and enabling specialization to distinct ecological niches.

This thesis has, in fact, mostly explored the two extremes of the spec-
trum. On the one hand, Chap.1 adopted a rather radical enactivist
approach, avoiding any pre-defined dichotomy between agents and
environment, or between sensors, actuators and brain. On the other
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hand, Chap 2 and 3 adopted a more standard mechanistic approach,
with predefined and fixed morphologies and cognitive architectures.
Mixed approaches, considering fixedmorpho-cognitive building blocks
being adaptively composed into diverse architectures, have been pro-
posed [75].

Self-organizing systems as a general design space. As shown in chap-
ter 1, self-organizing systems, such as cellular automata, can be an
interesting sandbox to evolve body morphologies and cognition as
emergent properties of a self-organizing structure. This approach is
in line with recent propositions in evolutionary and synthetic biology
to study morpho-cognitive systems in all their diversity and gener-
ality, which is sometimes referred to as basal cognition [239, 264].
In such views, unicellular organisms [422] or even gene regulatory
networks [423] can be conceived as cognitive systems able to make
decisions and even learn from experience. We believe that the com-
putational methods we have proposed in Chap 1 can provide a useful
experimental testbed to simulate and test hypotheses in basal cogni-
tion.

In AI and ALife, the methods we developed in Chap 1 may set the
ground for a completely different approach to building open-ended
and versatile AI systems as compared to current deep learning and
generative AI approaches – which still either assume prior notions
of agency and embodiment, or completely ignore them. Here we
aim to address how to build artificial systems where sensorimotor
agency and simple forms of learning and evolution self-organize from
scratch.

Meta-evolution and genotype-phenotypemapping. Meta-evolution
refers to the process by which evolutionary mechanisms have them-
selves (macro-)evolved (e.g. the structure of the DNA and how it en-
codes phenotypic traits). This thesis has mostly ignored such mecha-
nisms, with the exception of Sec.1.3 where we studied the self-organization
of proto-evolutionary dynamics. In nature, this includes changes in
evolvability [424] andmodifications to genotype-phenotypemappings.
In particular, complex (constantly evolving) genotype-phenotypemap-
ping might allow effective mutations that generate very diverse and
efficient phenotypic variations. Several works in computer simula-
tion explored the questions of the evolution of evolvability [302] and
genotype-phenotype mapping [425–427].

5.2.3 Going further in the complex interactions
between groups of agents

This thesis did not explore cultural evolution as an adaptation mech-
anism, except to some extent in the contribution in Sec.3.2, which
addresses cultural aspects through the emergence of a common lex-
icon and shared intentionality. In this section, we explore how cul-
tural evolution (and especially the cultural accumulation of knowl-
edge) could emerge in a simulation.
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Culture. Building on our non-episodic eco-evolutionary framework
(Sec. 2.1), we investigated the emergence of altruistic behaviors di-
rected toward offsprings (Sec. 4.1). Future studies could extend this
work by examining the formation of larger social groups beyond the
immediate parent-offspring relationships. In addition, the observed
altruistic behavior in our study was limited to resource sharing—a pre-
defined, hardcoded action that agents evolved to perform. Expanding
on this, future research could explore a broader range of altruistic
behaviors, such as the transmission of information, which may reveal
additional mechanisms driving the evolution of cooperation.

A particularly intriguing research direction is to investigate how cul-
tural transmission and knowledge accumulation might emerge spon-
taneously in artificial systems. While recent work has demonstrated
that agents can meta-learn to acquire knowledge by observing their
peers [150], these studies were conducted under highly controlled
conditions: agents were trained on episodic training within prede-
fined tasks and utilized oracle policies to meta-train the learners.
A key open question is whether similar cultural learning processes
could emerge naturally in a less engineered eco-evolutionary con-
text (Sec.2.1), where agents must simultaneously survive, adapt, and
potentially develop the capability to learn from each other without
external guidance or supervision.

In particular, the compositional dynamics we introduced in the pre-
vious section Sec.5.2.1 could be an interesting ingredient favoring the
emergence of cultural transmission. For example, recipes that are
hard to discover in the lifetime of the agents but have beneficial im-
pacts should benefit from being culturally transmitted across gener-
ations. The emergence of efficient (potentially open-ended) cultural
accumulation in groups of agents in an embodied eco-evolutionary
simulation would be interesting both as a result and as a mean to
study further the dynamics of cultural transmission (with movements
of populations etc.).

Further studies could also explore the emergence of active teaching,
in which agents deliberately perform actions with the goal of trans-
mitting information.

Communication. Cultural transmission and especially teachingmight
be facilitated by adding explicit communication channels in our simu-
lations, such as continuous signals that agents can produce and per-
ceive. Although agents in our current simulations can in theory use
movements and environmental changes to transmit information (i.e.
implicit communication), introducing richer communication mecha-
nisms could facilitate more structured interactions and enable the
emergence of more complex cooperative behaviors. Communication
could also be used to form groups and coordinate behavior, as pre-
sented in our work Sec.3.2. Further works could study the impact of
richer communication on the emergent social behavior observed in
eco-evolutionary simulations such as the ones presented in section
Sec.2.1.

Having developed our perspectives on the specific roles of environ-
ment, agent and interaction design in the quest of open-ended dy-
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namics in artificial systems, we will now conclude this thesis on gen-
eral and longer-term – perhaps alsomore speculative – perspectives.

5.3 General perspectives

We presented in the previous section concrete perspectives on the
architectural components we believe are interesting in the quest for
open-endedness. We will now discuss general perspectives about
emergent complexity and open-endedness.

5.3.1 Balancing emergent complexity and engineered
dynamics

Ideally, to introduce as few engineered human biases as possible and
observe the whole open-ended picture unfold from basic chemical
reactions as it did in the real world, we would like to have everything
emerge from a basic physical simulation, for example similar to the
direction taken in chapter 1.

The example of Flow Lenia Sec.1.3. However, for now, the emerging
dynamics in chapter 1 are still far from leading to the high level of
cognition we observe in the real world or even in classical machine
learning work. Further work could explore how learning and memory
could emerge in such a cellular automaton system, potentially tak-
ing inspiration from meta-learning experiments in classical machine
learning (like the one performed in Sec.3.1).

While our work in Sec.1.3 shows promising results in emerging evo-
lution, knowing if the system already contains the sufficient condi-
tions to enable truly open-ended evolution is still an open question.
Without surprise, we suspect it does not: we ran very long-term sim-
ulations and so far, they all converge to a plateau in diversity. Yet,
it is still a possibility that more scaling (in terms of size of the grid
or even longer timescale) and different initial parameters could un-
lock a richer evolutionary dynamics. Further experiments, using e.g.
quality diversity to explore the space of parameters, and larger-scale
experiments need to be conducted to explore this direction.

Another possibility is that the current physics of the system does not
allow for open-ended dynamics, for example, as it may systematically
lead to the existence of a single ”best” species that just overtakes ev-
ery other one without having any ”counter species”. Having a system
which always guarantees the possibility of having a counter should,
for example, prevent the winner-takes-all result that we see in long-
term experiments, and could potentially lead to a pressure to com-
plexify or diversify (Sec.0.3.3). In particular, biologists have shed light
on the role of parasitism as a driver of continual change and potential
increase in complexity [216]. A similar dynamic has been reproduced
in silico: in Alife simulation of artificial chemistry [428], as well as
minimal computational machine ecosystems [429].
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3: For example Lu et al in their paper ”Discovered
Policy Optimisation” [174] usedmeta-learning to dis-
cover efficient reinforcement learning algorithms,
ultimately using the discovered insights to also for-
mulate a new reinforcement learning algorithms

The system may also require the introduction of additional low-level
physical elements/rules, or higher-level environmental dynamics. For
instance, creating distinct high-level ecological niches with varying
demands could encourage the evolution of diverse capabilities. The
choice of the elements to be introduced could be inspired by the
more controlled eco-evolutionary experiments done in Sec.2.1. Intro-
ducing a small number of engineered environmental elements could
help identify missing components in our simulations. This approach
may reveal whether these components can emerge naturally or indi-
cate the need for a more general system.

General thoughts. Throughout this thesis, we have argued that in-
troducing engineered high-level structures can provide valuable in-
sights into the mechanisms and ingredients required for open-ended
dynamics. These insights, in turn, may guide the design of low-level
systems capable of generating complexity from the bottom up.

For example, in recent works, a lot of effort has been put on using
large language models to introduce high-level components, such as
task generation [46, 48, 65] or diversity search [430], that aim for
open-ended dynamics. These experiments with high-level compo-
nents may allow us to elicit certain mechanisms and potentially un-
derstand better the mechanisms of open-endedness.

On the other hand, the emergent complexity approach can lead to
more efficient systems by enabling the discovery of dynamics or so-
lutions that are difficult to engineer or anticipate [3, 10]. The emer-
gent solutions may also lead to the transfer of ideas to high-level en-
gineered systems3. In particular, understanding the conditions that
drive complexity in simpler systems could provide valuable insights
for designing more complex, high-level engineered systems.

In fact, emergent complexity and engineered biases benefit each other
and are often complementary, with engineered elements often form-
ing the basis for complexity to emerge. It is for instance clearly the
case in [44](illustrated Fig.5.7) where most of the environmental dy-
namics is carefully engineered, yet enables the procedural generation
of a wide diversity of tasks promoting the learning of general and com-
plex skills. However, the engineered high-level structure might often
limit the space of possibilities by restricting it to a space that was
envisioned by the experimenter. This can therefore potentially limit
the emergence of complexity.

We also observe more and more open-ended task generation used
to train high-level cognitive architecture for the learning of general
skills [44–49]. In fact, due to the limited amount of human-generated
data, machine learning methods are increasingly moving beyond su-
pervised training by incorporating open-ended data generation [3, 43,
47]. The question on how to generate such data is therefore central.



5 Discussions 157

5.3.2 The challenges of measuring and analyzing open
endedness

Asmentioned in the introduction, the notion of open-endedness does
not rely on a final objective but rather on emergent complexity, also
often meaning that we might not have anticipated the process that
might emerge. This raises the questions : how to know when a pro-
cess is open-ended ? Is there a measure of it ? In fact, as we don’t
know what we’re looking for exactly, in terms of dynamics, defining a
measure of open-endedness proves to be challenging.

Several attempts to formalize a measure of open-endedness have
been proposed, including Bedau et al. who proposed a measure fo-
cused on evolutionary dynamics and based on evolutionary activi-
ties statistics (similar to what we used in Sec.1.3 ) [431]. However,
while some simulations have passed this test of open-endedness at
the highest level [35, 36, 432], they fall short of matching the open-
endedness observed in natural or cultural evolution. Even if Bedau’s
test already emphasizes that there are different levels of open-endedness
(i.e. open-endedness is not a binary property), the fact that such sim-
ulations still pass the maximum level highlights the need for more
complete measures of open-endedness. In addition, Bedau’s test fo-
cuses on evolutionary dynamics and is therefore nontrivial to apply
to other dynamics. Measuring open-endedness is in fact still an open
question with several challenges [433].

The concept of open-endedness is closely tied to novelty [392], which
is inherently abstract and subjective. Different definitions of nov-
elty can lead to different interpretations of what constitutes open-
endedness. For example, the noisy TV example – a screen that dis-
plays every few instants a new sampled image where each pixel fol-
lows a normal distribution – might be considered novel under a spe-
cific measure of novelty (as the probability to sample an image that
has already been sampled is 0), but from a human-centered point of
view, this would not be considered as really open-ended.

Similarly, the sequence of natural numbers – 1,2,3... – always brings
new elements but would not be considered open-ended by a human.
In fact, natural numbers can be summarized into a single concept
where additional integers are not really considered new. With the
same idea, the noisy TV can be modeled by a statistical model. To
address this issue, Hughes et al. define as novel something that can’t
be predicted by a statistical model learned on the discoveries so far
: ”[...]what an observer considers ’new’ should be artifacts that are
unpredictable according to their current statistical model of the sys-
tem under consideration. Moreover, we specify that the observer’s
’perspective’ is generated by learning that statistical model on the
history of artifacts thus far presented by the system.” [43].

With a similar idea, Stepney and Hickinbotham state that detecting
open-endedness in a system is in fact an open-ended process on its
own [434], as :”an open-ended system will eventually move outside
its current model of behavior, and hence outside any measure based
on that model” [434].
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Figure 5.9: Meta diversity. An agent iteratively learns
an ever-growing diversity of representations to ex-
plore. Figure from [2].

Building on that idea of changing novelty, works in machine learning
and diversity search have proposed to learn the diversity space in an
online manner, adapting at each new discovery. For example, a pos-
sibility is to learn a neural network based encoding of the stream of
discoveries with an autoencoder which will be used as the behavioral
space to explore [234]. In particular, Etcheverry et al. also proposed
to iteratively build a diversity of diversity (meta-diversity, Fig.5.9), cre-
ating a new space of behavior when the previous ones were saturated
hence not capturing well enough the new behaviors [235] – in line with
the idea of having always ”new novelty”. Those approaches revealed
to be effective at exploring more effectively.

As emergent phenomena are usually unknown a priori, we often re-
lied on the design of a-posteriori measures based on our own ob-
servations of the simulations. We most of the time used qualitative
observation or general measures to track emergent complexity and
then designed more specific measures to further characterize the dy-
namics. This approach is relevant as most of our contributions of-
ten focused on isolating specific transitions and emergent complexity,
but its generality is quite limited. Designing methods for the generic
detection of phase transitions in complex systems is still an open
problem.

Finally, though they might provide useful insights into a system, mea-
sures of open-endedness are inherently limited to testing novelty
over finite timeframes. As a result, they offer little information about
a system’s potential for infinite novelty generation. They might, how-
ever, still be useful as a proxy to search for dynamics that seem to
indicate open-ended dynamics or at least some level of emergent
complexity.

5.3.3 Simulations to understand the real world

While this thesis primarily explores simulation in the context of open-
ended dynamics and the development of generalist agents, the simu-
lated dynamics studied here could also contribute to a deeper under-
standing of real-world phenomena. Simulations provide a powerful
tool for hypothesis testing, allowing researchers to explore variations
and assess potential outcomes.

In particular, the research presented in Chapter 1 offers insights into
how groups of cells can self-organize through local interactions, es-
pecially during morphogenesis—the process of body development.
These contributionsmay enhance our understanding of low-level ”cog-
nition” in cellular systems and how cells make collective decisions at
a macroscopic scale. For instance, this perspective could provide new
insights into cancer, a condition in which a subset of cells escapes
the collective order to establish its own independent individuality.
Understanding and reverse-engineering the principles of cellular self-
organization could lead to significant advancements in medicine [268,
269]. Finally, the findings in Chapter 1 may also inform broader discus-
sions on the emergence of individuality and evolutionary dynamics,
shedding light on how life could arise from an initially lifeless system
governed solely by physical laws.
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Similarly, the evo-evolutionary simulations we proposed in chapter 2
can contribute to a better understanding of niche construction phe-
nomena, as well as to test hypotheses in behavioral ecology. In partic-
ular, our work on simulating the emergence of agricultural practices
in agent-based systems (Sec.2.2) was designed with this goal in mind.
Further work should be done to connect more deeply our contribu-
tions in artificial life and machine learning to other fields such as
biology, (human) behavioral ecology, or neuroscience.

More generally, at a time of environmental crisis induced by human
activity, a better understanding of the reciprocal causation between
environmental dynamics and agent’s adaptation is an important re-
search direction. Artificial ecosystem simulations can potentially help
to explore the vast space of potential scenarios and provide a deeper
understanding of the problem in all its generality (i.e. not limited to
human-induced global warming and biodiversity loss).



APPENDIX



A
Appendix

A.1 Appendix: Discovering sensorimotor
agency in cellular automata

▶ In the first part of this appendix, we provide several additional
results :

• In section A.1.2, we provide the resulting curriculum “phy-
logeny” from a run of IMGEP.

• In section A.1.3, we provide ablation of the IMGEP method:
removing obstacles from the training in A.1.3, replacing the
gradient with a simple evolutionary algorithm in A.1.3, and
replacing the biased goal sampling by an uniform goal sam-
pling in A.1.3.

• In section A.1.4, we provide results for each of the 10 seeds
to display the variability.

• In section A.1.5, we provide the full results for the general-
ization tests.

▶ We then provide the details of the method, system, and tests :
• In section A.1.6, we describe the Lenia system in details.
In particular in subsection A.1.6, we describe the change
made on the original lenia system from [8, 9] to make it
more differentiable.

• In section A.1.7, we describe the IMGEP method in details.
• In section A.1.8, we provide details about the tests andmea-
sures used in the main papers: empirical agency test in
A.1.8, moving test in A.1.8, speed measure in A.1.8, basic ob-
stacle test in A.1.8, generalization tests in A.1.8.

• In section A.1.9, we provide details about the baselines we
use for comparison: random search in A.1.9, agent from the
original lenia papers [8, 9] in A.1.9

▶ We provided in section A.1.10 the legends of the movies.

A.1.1 Data availability

The resulting parameters as well as their measured performances on
the test tasks are available on Github at https://github.com/
flowersteam/sensorimotor-lenia-search in the data folder.
More precisely:

▶ Folder 𝑖𝑚𝑔𝑒𝑝_𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 contains parameters generated by the
IMGEP method presented in the main text as well as their mea-
sured robustness.

https://github.com/flowersteam/sensorimotor-lenia-search
https://github.com/flowersteam/sensorimotor-lenia-search
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Figure A.1: “Phylogeny tree” of one run of IMGEP. The
red dot are reached positions (by a step of IMGEP).
The blue zone correspond to the zone where obsta-
cles can be placed. Black arrows indicate optimiza-
tion progress (the point at the end of the arrow was
obtained after optimizing the one at the start of the
arrow). The path leading to the best agent (reaching
the furthest position on the x axis) is highlighted in
green. Interestingly we can see that the best path is
not necessarily a straight path. For visibility reasons,
we put transparency on the optimization steps that
led to reached positions far from the reached po-
sition of the parameters that was used to initialize
the optimization (often due to failing ).

▶ Folder 𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 contains parameters generated by ran-
dom exploration as well as their measured robustness.

▶ Folder ℎ𝑎𝑛𝑑𝑚𝑎𝑑𝑒_𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 contains parameters from the orig-
inal Lenia papers [8, 9] (more details in appendix A.1.9) as well
as their measured robustness.

▶ Folder 𝑖𝑚𝑔𝑒𝑝_𝑛𝑜_𝑔𝑟𝑎𝑑_𝑖𝑛𝑖𝑡_𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 contains parameters obtained
from the IMGEP with ablation on the gradient (described in ap-
pendix A.1.3) as well as their measured robustness.

▶ Folder 𝑖𝑚𝑔𝑒𝑝_𝑛𝑜_𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠_𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 contains parameters obtained
from the IMGEP with ablation of the obstacles (described in ap-
pendixA.1.3) as well as their measured robustness.

▶ Folder 𝑖𝑚𝑔𝑒𝑝_𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑛𝑖𝑡_𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 contains parameters
obtained from the IMGEP with a uniform sampling of goals (de-
scribed in appendix A.1.3) as well as their measured robustness.

▶ Folder 𝑣 𝑖𝑑𝑒𝑜𝑠 contains all video presented in this work.
▶ File 𝑐𝑟𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑐𝑎𝑡𝑒𝑔𝑜𝑟 𝑖𝑒𝑠.𝑗𝑠𝑜𝑛 contains the result of the agency and
moving test for all the pre-filtered parameters (more details on
the pre-filter in appendix A.1.8) from the IMGEP, random, hand-
made exploration and ”IMGEP no obstacles”.

▶ File 𝑐𝑟𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑐𝑎𝑡𝑒𝑔𝑜𝑟 𝑖𝑒𝑠_𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛.𝑗𝑠𝑜𝑛 contains the result of the agency
andmoving test for all the pre-filtered parameters (more details
on the pre-filter in appendix A.1.8) from the ablations presented
in appendix A.1.3 and A.1.3.

We also provide the code to reproduce the experiments on Github at
https://github.com/flowersteam/sensorimotor-lenia-search.

A.1.2 Curriculum phylogeny

In Fig.A.1, we explore the curriculum path that is generated by the
IMGEP. For this aim, we plot the achieved position (reached goal) by
each step of the IMGEP. Arrows show, for each step, what was the pre-
vious step result used as initialization. In addition, we highlight in
green the sequence of reached positions leading to the furthest posi-
tion attained. We observe that the path to this furthest position is far
from being straightforward. This indicates a rather complex optimiza-
tion landscape toward this position, that would have been difficult to

https://github.com/flowersteam/sensorimotor-lenia-search
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Figure A.2: Comparison of ablation on speed

navigate through gradient descent alone. By generating diverse goals
and their associated solutions in parameter space, the IMGEP is able
to explore potential stepping stones that can later on prove useful to
reach difficult positions.

A.1.3 Ablations

We will call the training procedure described in the main text as the
original method, to which we provide additional detail in A.1.7. In this
section, we provide ablation studies aiming to evaluate the effect of
removing different components of this original method. To make it
as fair as possible and also highlight the difference each ablation in-
troduces, all ablation studies except the “IMGEP no obstacle” were
made starting with the same initialization of the history as the ones
obtained from the initialization search (7) of the original method. This
initialization might however be influenced by the presence of obsta-
cles, this is why “IMGEP no obstacle” will run its own initialization
search.

IMGEP no obstacles

In this ablation, we use the same training procedure as in the original
method but remove the obstacles from the grid. This means that
during training the agent will only be trained to go further but will
never encounter any obstacle.
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Figure A.3: Comparison of ablation on speed with obstacles
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Figure A.4: Comparison of ablation on robustness to static obstacles

With this ablation, we obtain moving agents that are faster without
obstacles than the original method (Fig. A.2) but have far less ro-
bustness to obstacles (Fig. A.4) and especially here against moving
obstacles (Fig. A.5,A.6). We also observe that agents trained in the



A Appendix 165

imgep imgep 
 no obs

imgep 
 no grad

imgep 
 random

0.0

0.2

0.4

0.6

0.8

1.0
ro

bu
st

ne
ss

_m
ov

in
g_

ob
st

ac
le

s1
robustness_moving_obstacles1

Figure A.5: Comparison of ablation on robustness to moving obstacles of speed 1
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Figure A.6: Comparison of ablation on robustness to moving obstacles of speed 2

original condition, at equal speed, are more robust to obstacles than
those in this ablation (Fig.A.7). This is intuitive as the training without
obstacles facilitates reaching further positions (as there is no obsta-
cle in the grid), resulting in higher speed since the episode duration
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Figure A.7: Scatter plot of robustness tomoving obstacles of speed 2 (y) and speed without obstacles (x) of IMGEP (red), IMGEP without obstacles
in the search (black), Random search (blue) and IMGEP with random sampling of goals (green). Even for moving agents with comparable speed
without obstacles, IMGEP with no obstacles has far less robustness to obstacles of speed 2 than IMGEP trained with obstacles.

Figure A.8: Comparison of the original IMGEP method and an IMGEP where gradient descent optimization of the parameters is replaced by
random mutations as described in A.1.3. We can see that random mutation hardly succeed in optimizing the parameters leading to very poor
performance compared to the IMGEP with gradient descent.

remains constant. However as they are not optimized to resist obsta-
cles, we observe much lower robustness.

No gradient

In this experiment, we replace the gradient descent in the original
method by a simple evolutionary strategy. For each goal we replace
the gradient descent by several parallels trials of random mutation
(mutation as described in 11) from the candidate parameters with a
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Figure A.9: Comparison of the original IMGEP method and an IMGEP where our our biased goal sampling is replaced by a random sampling of
goal in the grid as described in A.1.3. We can see that our biased sampling is much more efficient at finding robust fast moving agents.

number of trials equal to the number of gradient descent steps per-
formed during optimization in the original method. At the end of
those trials we select the parameters having the lowest loss regard-
ing the goal (same loss as the one used for gradient descent in the
original method). We observe that the performances of this method is
significantly lower (Fig.A.8), suggesting that random mutations is not
effective in such hard optimization landscapes (and especially with
such little number of rollouts) and leads in most cases to explosion
or vanish of the matter.

Uniform Random sampling of target in IMGEP

In this experiment, we replace the curriculum-driven goal sampling of
the original method (detail on curriculum in 7) by a uniform sampling
in the grid.

Compared to the original method, we observe overall lower perfor-
mances in term of speed and robustness (Fig. A.9 and Fig.A.2,A.3,A.5,A.6).
This can be explained by the fact that random sampling often sam-
ple goals that are impossible to reach at the time. We observe that,
with the same budget as the original method run, it only reaches a
very small subset of the entire grid compared to the original method
(Fig.A.10). Most target goals far from initialization failed while goals
that were close enough were sometimes successful.

However, we observe that this ablation still allows to obtain more
moving agents than random search (110 vs. 30)

We introduced a curriculum in our original method mostly to speed
up computation. We indeed show with this ablation how it benefits
the search process. Note however that, in theory, the current ablation
should obtain similar results if given enough compute budget (but
will most likely require much more time). In fact, a curriculum can
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Figure A.10: Target goals and reached positions for every seed of (left) original method (right) IMGEP with uniform sampling of goal. The
uniform sampling IMGEP sample a lot of far points that not reached at all

Seed Number Number Number max max
Number of agents of moving of robust speed speed obs

(agents) (agents) (agents) (agents)
Seed 0 107 93 91 2.8 1.4
Seed 1 64 54 26 2.7 1.5
Seed 2 33 32 1 2.0 1.1
Seed 3 18 7 0 0.5 0.3
Seed 4 35 26 6 1.9 0.4
Seed 5 66 52 38 2.9 1.8
Seed 6 54 54 2 2.5 0.3
Seed 7 30 30 1 3.0 0.9
Seed 8 44 44 4 2.3 0.3
Seed 9 104 94 92 3.2 2.3

Table A.1: Seed variability

also emerge with random goal sampling, as the agent will only make
progress on goals that either not too far or too close from its current
abilities. (see e.g. Forestier et al. 2022 [249]).

A.1.4 Seed variability

We report in tab.A.1 the variability of the results of the method across
the 10 seeds. The variability in result might indicate that some pa-
rameter area are easier to navigate or more prone to certain behav-
ior. Overall we still observe that every seed finds a good amount of
moving agents and most of them find at least 1 robust agent(ie an
agent with a score ≥ 0.95 to the “basic obstacle test”).

A.1.5 Generalization table

We refer to table A.2 for the full generalization results.
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A.1.6 Lenia system

Cellular automata are, in their classic form, a grid of “cells” 𝐴 = {𝑎𝑥 }
that evolve through time 𝐴𝑡=1 ⟶ ... ⟶ 𝐴𝑡=𝑇 via local “physics-like”
laws. More precisely, the cells sequentially update their state based
on the states of their neighbours: 𝑎𝑡+1𝑥 = 𝑓 (𝑎𝑡𝑥 , 𝒩 (𝑎𝑡𝑥 )), where 𝑥 ∈ 𝒳
is the position of the cell on the grid, 𝑎𝑥 is the state of the cell, and
𝒩 (𝑎𝑡𝑥 ) is the neighbourhood of the cell. The dynamic of the CA is
thus entirely defined by the initialization 𝐴𝑡=1 (initial state of the cells
in the grid) and the update rule 𝑓 (function that takes a scalar and
outputs a scalar,control how a cell updates based on its neighbours).
But predicting their long term behavior is a difficult challenge even
for simple ones due to their chaotic dynamics.

Lenia is a class of continuous cellular automata (CA) where each CA
instance is defined by a set of parameters 𝜃 that conditions the CA
rule 𝑓𝜃 ; once the parameters 𝜃 conditioning the update rule has been
chosen, the system is a classical CA where the initial grid pattern 𝐴𝑡=1
will be updated.

In Lenia, the system is composed of several communicating grids 𝐴 =
{𝐴𝑐} which we call channels. In each of these grids, every cell/pixel
can take any value between 0 and 1. Cells at 0 are considered dead
while others are alive. The channels are updated in parallel according
to their own physics rule. Intuitively, we can see channels as the
domain of existence of a certain type of cell. Each type of cell has its
own physics : it has its own way to interact with other cells of its type
(intra-channel influence) and also its own way to interact with cells
of other types (cross-channel influence).

The update of a cell 𝑎𝑥,𝑐 at position 𝑥 in channel 𝑐 can be decomposed
in three steps. First the cell senses its neighbourhood in some other
channels (its neighbourhood in its channel, with cells of the same
type but also in other channels with other types of cells) through
convolution kernels which are filters 𝐾𝑘 of different shapes and sizes.
Second, the cell converts this sensing into an update (whether posi-
tive or negative growth or neutral) through growth functions 𝐺𝑘 asso-
ciated with the kernels. Finally, the cell modifies its state by summing
the scalars obtained after the growth functions and adding it to its
current state. After the update of every rule has been applied, the
state is clipped between 0 and 1. Each (kernel,growth function) cou-
ple is associated to the source channel 𝑐𝑠 it senses, and to the target
channel 𝑐𝑡 it updates. A couple (kernel, growth function) character-
izes a rule on how a type of cell 𝑐𝑡 reacts to its neighbourhood of cells
of type 𝑐𝑠 . Note that 𝑐𝑠 and 𝑐𝑡 could be the same, which correspond to
interaction of cells of the same type (intra-channel influence). Note
also that we can have several rules, i.e. several (kernel,growth func-
tion) couples, characterizing the interaction between 𝑐𝑠 and 𝑐𝑡 .
A local update in the grid is summarized with the following formula
(where 𝐺𝑘 , 𝐾 𝑘 , 𝑐𝑘𝑠 , 𝑐𝑘𝑡 are respectively the growth function, convolution
filter, source channel, target channel associated with the k’th rule):
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Figure A.11: Visualization of (left) the convolution
kernels used in the original lenia papers [8, 9],
(right) the kernel we propose in this paper for more
differentiation capabilities. The kernel we propose
consists of a sum of free shifted gaussian bumps
while the one in the original lenia papers consist of
fixed concentrated rings.

𝑎𝑡+1𝑥 = 𝑓 (𝑎𝑡𝑥 , 𝒩 (𝑎𝑡𝑥 )) =
⎡⎢⎢⎢⎢
⎣

𝑎𝑡𝑥,𝑐0 + 1
𝑇 ∑𝑘 st 𝑐𝑘𝑡 =0 𝐺

𝑘(𝐾 𝑘(𝑎𝑡𝑥,𝑐𝑘𝑠 , 𝒩𝑐𝑘𝑠 (𝑎𝑡𝑥 )))
.
.

𝑎𝑡𝑥,𝑐𝐶 + 1
𝑇 ∑𝑘 st 𝑐𝑘𝑡 =𝐶 𝐺

𝑘(𝐾 𝑘(𝑎𝑡𝑥,𝑐𝑘𝑠 , 𝒩𝑐𝑘𝑠 (𝑎𝑡𝑥 )))

⎤⎥⎥⎥⎥
⎦

For each rule, the shape of the (kernel, growth function) is parameter-
ized. We are thus able to “tune” the physics of the cells and of their
interactions by changing the kernels shape (how the cells perceive
their neighborhood) as well as the growth function shape (how the
cells react to this perception).

Differentiating through Lenia steps

Due to the locality and recurrence of the update rule, there is a close
relationship between cellular automata and recurrent convolutional
networks [435]. In fact, we can see a rollout in Lenia as applying a
recurrent neural network to an initial state. If (some of) the network
parameters are differentiable, backpropagation can be done by “un-
folding” the Lenia rollout and applying a loss at certain time step(s)
like in [257].

However, in the classic version of Lenia, the shape of the kernels are
not totally differentiable and not very flexible. To allow easier op-
timization of the Lenia system, we introduce some changes to the
kernel parameterization.

In fact in the original Lenia [8], the number of bumps in the kernel
(see Fig.A.11 left ) is fixed and cannot be optimized through gradient
descent.

We therefore introduced a new class of CA with differentiable param-
eters. To do so, the main shift is to use kernels in the form of a sum
of k overlapping gaussian bumps:

𝑥 →
𝑘
∑
𝑖
𝑏𝑖𝑒𝑥𝑝(−

( 𝑥
𝑟𝑅 − 𝑎𝑖)2
2𝑤2𝑖

)

The parameters controlling the shape are then 3𝑘-dimensional vec-
tors: 𝑏 for height of the bump, 𝑤 for the size of the bump and 𝑎 for
the center of the bump.
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These symmetric “free kernels”, while very inspired from Lenia’s origi-
nal “vanilla bumps”, allow differentiation and more flexibility and ex-
pressivity but at the cost of more parameters. For example, it is pos-
sible to reduce the number of bumps by assigning some null height
values, allowing the number of bumps to be optimized through gra-
dient descent.

In Lenia, a growth function 𝐺 ∶ [0, 1] → [−1, 1] is any unimodal non-
monotonic function that satisfies 𝐺(𝜇) = 1. In this work, we use the
continuous exponential growth function 𝐺(𝑥) = 2 exp (− (𝑥−𝜇)2

2𝜎2 ) − 1
which is differentiable with respect to 𝜇 and 𝜎 .
To summarize, the parameters of the update rule are thus those con-
trolling the kernel shape (𝑅, 𝑟 , 𝑎, 𝑤, 𝑏), those controlling the growth
function (𝜇, 𝜎 , ℎ) and a time controlling parameter (𝑇 ). For a total of
𝑛 rules (all channels included) with 𝑘 bumps kernels, the number of
parameters is (3𝑘 + 4)𝑛 + 2. In our experiments, R and T are chosen
randomly and fixed while all the other parameters are optimized, and
we use a total of 𝑛 = 10 rules with 𝑘 = 3 bumps kernels . So in total
we have 132 parameters for the rules from which 130 are optimized.

In addition to the rule, parameters we also optimize the initialization
square 𝐼𝑠𝑞𝑢𝑎𝑟𝑒 ∈ [0, 1](40,40).

Obstacles

The multi-channel aspect of Lenia allows the implementation of dif-
ferent types of cells/particles. To implement obstacles in Lenia we
added a separate “obstacle” channel with a kernel going from this
channel to the learnable “creature” channel (see Fig.2.). This ker-
nel triggers a severe negative growth in the pixels of the learnable
channel where there are obstacles but has no impact on other pix-
els where there are no obstacles (very localized kernel). This way
we prevent any growth in the pixels of the learnable channel where
there are obstacles. The formula of the growth function is : 𝐺(𝑥) =
−𝑐𝑙𝑖𝑝((𝑥 −1𝑒−8), 0, 1)∗10. Hyperparameters of this handmade rule can
be found in A.1.6.

The learnable channel cells can only sense the obstacles through the
changes/deformations it implies on it or its neighbours. In fact, as
the only kernel that goes from the obstacle channel to the learnable
channel is the one we hand-designed, if a macro agent emerges it
has to “touch” the obstacle to sense it. To be precise the agent can
only sense an obstacle because its interaction with the obstacle will
perturb its own configuration and dynamics (i.e. its shape and the
interaction between the cells constituting it). This is similar to exper-
iments with swarming bacteria [436], where the swarm agent must
learn to collectively avoid antibiotic zones (externally-added obsta-
cles) where the bacteria can’t live.

In our implementation, obstacles stay still, meaning that there is no
rule that goes toward (and hence no update of) the obstacle channel
. As such, an update step in the final system is summarized at the
bottom of Fig.2..
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To test the agents under moving obstacles, we simply shift the chan-
nel of obstacles of a certain amount of pixel at every timestep. This
shift of the grid, for an integer value of speed, can be written as a
rule of the system from the obstacle channel to the obstacle channel.
The rule would be the same on all the grid and is localized as it is a
function of the fixed neighbourhood. Moving obstacles with a speed
with a rational value (for example 0.5 pixels/timesteps) is done in our
case by doing the shift every few timesteps.

Lenia rules parameters

Here is the list of the parameters associated to the rules of a Lenia
system with C channels, 𝑛𝑏𝑘 rules with kernels with k bumps. We also
provide the range used in this work for the learnable channel. In
this work we used C=2 channels (one learnable channel and the fixed
channel), 𝑛𝑏𝑘 = 10 learnable rules and 1 fixed rule (for the obsta-
cles).

▶ Common to all rules
• T ∈ [1, 10]

▶ Learnable rules
• Kernel (convolution filter) parameters:

* R ∈ [15, 40] Radius of the kernels (common to all ker-
nels)

* r ∈ [0, 1]𝑛𝑏𝑘 relative radius of each kernel.
* b ∈ [0, 1]𝑛𝑏𝑘 ,𝑘 height of the k bumps.
* w ∈ [0.01, 0.5]𝑛𝑏𝑘 ,𝑘 width of the k bumps.
* a ∈ [0, 1]𝑛𝑏𝑘 ,𝑘 position of the bumps on the radius.

• Growth function 𝐺(𝑥) = 2 exp (− (𝑥−𝜇)2
2𝜎2 ) − 1 parameters

* 𝜇 ∈ [0.05, 0.5]𝑛𝑏𝑘 mean of the gaussian growth function.
* 𝜎 ∈ [0.001, 0.18]𝑛𝑏𝑘 variance of the gaussian growth func-
tion.

* h ∈ [0, 1]𝑛𝑏𝑘
• 𝑐0 = [0] × 𝑛𝑏𝑘 source channel (0 is learnable channel)
• 𝑐1 = [0] × 𝑛𝑏𝑘 destination channel

▶ Fixed rule
• Kernel parameters:

* R = 4 small radius for very localized action
* r = [1,1,1]
* b = [1,0,0]
* w = [0.5,1,1]
* a = [0,0,0]

• Growth function 𝐺(𝑥) = −𝑐𝑙𝑖𝑝((𝑥 − 1𝑒 − 8), 0, 1) ∗ 10
• 𝑐0 = 1 source channel (1 is fixed channel)
• 𝑐1 = 0 destination channel

Lenia rule parameter mutations

▶ Common to all rules
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• T : 𝒩 (0, 0.1) × ℬ(0.01) (mutation then integer)
▶ Learnable rules

• Kernel (convolution filter) parameters:

* R 𝒩 (0, 0.1) × ℬ(0.01) (mutation then integer)
* r :𝒩 (0𝑛𝑏𝑘 , 0.2 × ℐ𝑛𝑏𝑘 )
* b : 𝒩 (03𝑛𝑏𝑘 , 0.2 × ℐ3𝑛𝑏𝑘 )
* w :𝒩 (03𝑛𝑏𝑘 , 0.2 × ℐ3𝑛𝑏𝑘 )
* a : 𝒩 (03𝑛𝑏𝑘 , 0.2 × ℐ3𝑛𝑏𝑘 )

• Growth function 𝐺(𝑥) = 2 exp (− (𝑥−𝜇)2
2𝜎2 ) − 1 parameters

* 𝜇 : 𝒩 (0𝑛𝑏𝑘 , 0.2 × ℐ𝑛𝑏𝑘 ) × ℬ(0.1)
* 𝜎 : 𝒩 (0𝑛𝑏𝑘 , 0.01 × ℐ𝑛𝑏𝑘 ) × ℬ(0.1)
* h 𝒩 (0𝑛𝑏𝑘 , 0.2 × ℐ𝑛𝑏𝑘 ) × ℬ(0.1)

A.1.7 IMGEP details

Algorithm 2: IMGEP pseudo code
1 Initialization: history ℋ and models 𝒯 ,Π, 𝑂𝑝𝑡𝑖𝑚, 𝑅.
2 for i=1..N do
3 Generate a target goal 𝜏𝑖 ∼ 𝒯 (ℋ) /* use of curriculum

learning and diversity search */
4 Train parameters on target goal 𝜃∗𝑖 = 𝑂𝑝𝑡𝑖𝑚(𝜃𝑖|𝜏𝑖), where

𝜃𝑖 ∼ Π(ℋ |𝜏𝑖) /* use of gradient descent and
stochasticity handling */

5 Evaluate parameters 𝑥𝑖 ∼ 𝑅(𝜃∗𝑖 ) /* behavioral
characterization */

6 Store in history 𝐻 ← 𝐻 ∪ (𝜃∗𝑖 , 𝑥𝑖) /* reuse knowledge for
task sampling and training */

7 return ℋ

In this section, we first recall the basics of the IMGEP procedure and
then go into the details of each element of the method.

Our method described in the pseudo code 2 starts by initializing a
pool of (parameters, reached position) couples by random search,
this constitutes the initial state of the history ℋ (details in 7). Then,
at each iteration, the method iterates through the following steps (il-
lustrated in Fig. A.12). 1) Sample a new goal using a goal sampling
strategy which takes into account the previously reached positions
(details in 7). An example of the sampling distribution can be found
in green in Fig 3.a. 2) Infer starting parameters for that goal by select-
ing parameters {(𝜃𝑙 , 𝐴𝑡=1

𝑙 )𝑖}𝑖=1...𝑡−1 associated to a previously reached
position in history ℋ that is close to the sampled goal (details in 11).
3) Optimize parameters toward the sampled goal by iteratively per-
forming rollouts of the Lenia system under different environmental
conditions 𝐴𝑓 and applying stochastic gradient descent on the MSE
loss between the disk at goal position and the mass of the learnable
channel at the last timestep (details in 11). 4) Update historyℋ with
the newly obtained parameter point and test it in various environ-
mental conditions 𝐴𝑓 to estimate its reached position (details in 11)
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Figure A.12: IMGEP loop

(such that it can be later reused as a starting point for achieving other
sampled goals).

As described in the main text, the behavioral space is the position
(x,y) of the center of mass at the last timestep of the rollout. The loss
we use is the Mean square error loss between the learnable channel
at the last timesteps of the rollout and the same grid with a super-
position of 2 disk centered at the goal position in the first channel.
The target disk has this formula: 0.9𝑥(0.15𝑥(𝑅𝑔 < 10) + 0.85𝑥(𝑅𝑔 < 5))
where 𝑅𝑔 is the euclidian distance to the goal position.
To introduce more diversity in the search (and potentially getting out
of difficult optimization landscape), some steps of IMGEP add muta-
tion to the promising parameters before applying the optimization
through gradient descent. More details can be found in 11.

Note that we also introduce an automatic way for the method to
restart again from scratch in case of not good enough first steps (not
present in pseudocode 2). We refer to subsection.7 for a detailed de-
scription of this restarting mechanism.

Note that the goal positions as well as the measured reached posi-
tions (details in 11) are normalized and centered between -0.5 and
0.5 (so that obstacle positions are at 𝑥 > 0 ,Fig.3 in the main text)
according to the map size 𝑆𝑋 .
The following sections provide additional details about different parts
of the method.

Initialization of history

The IMGEP method first applies an initialization of historyℋ through
random search to bootstrap the whole IMGEP procedure.

In this work, the initialization of history consist of 40 trials of ran-
dom parameters. The range used for this random search are the one
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presented in A.1.6 except that we divide the strength of the kernels
parameters h by 3. This change is done in order to have weaker/s-
lower updates increasing the chance to have a pattern not exploding
or vanishing in 50 timesteps, in order to facilitate further optimiza-
tion.

This dividing of h by 3 is only to make things go faster (requiring less
trials for the initialization of history) with some human heuristic on
the system but should not be mandatory as random search without
this should also get interesting parameters for initialization withmore
trials.

Warming up goal sampling

To accelerate the curriculum, we start the first 8 steps of the IMGEP
with a deterministic goal sampling which tries to go as far as possi-
ble on the x axis. The goal position starts at position (-0.19,0) and is
shifted of +0.06 along the x axis for every of those deterministic steps.
The rest of the goal sampling is stochastic as described in 7.

Initialization selection

History initialization and the first IMGEP steps have a huge impact on
the performance of the method, as it will provide the basis for all
subsequent optimization. History initialization and the warm up of
goal sampling have a huge impact on the performance of the method,
as it will provide the basis for all subsequent optimization.

To mitigate this problem, we also apply initialization selection with
the objective of facilitating further optimization. We run the first steps
of the method (random initialization and few steps of optimization),
and observe the loss for the 3 first deterministic targets (described
in section 7). If this loss is above a certain threshold for one of the
3 step, we start over again getting rid of the initialization history and
initializing it again with random search. We perform this until we find
a “good” initialization that is below the threshold for the 3 steps.

Goal sampling

The goal sampling we chose in this work intends to sample goals ((x,y)
positions) that should be most of the time further in the grid (for
harder goals), not too far from previously reached positions (for fea-
sibility of the goal) and also not too close from previously achieved
goals (to make progress) . From those heuristic we introduce our engi-
neered goal sampling strategy in pseudo code 3. The objective of this
engineered sampling is to accelerate the search but much simpler
ones could work if given enough computational budget (see ablation
with totally random sampling A.1.3).
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Algorithm 3: Goal sampling strategy
1 Input: history ℋ nb_close=0,nb_veryclose=0 while nb_close<1

or nb_veryclose >2: do
2 if rand ∼ 𝒰(0, 1) <0.2 : then
3 goal =

bestgoal(ℋ )+(𝒰(0, 1)×0.04+0.02, (𝒰(0, 1)×0.45−0.22)/4, )
/* Try little further than previous
best */

4 else
5 if rand ∼ 𝒰(0, 1) <0.7 : then
6 goal=(−𝒰(0, 1) × 0.2 + 0.35, −𝒰(0, 1) × 0.45 − 0.22) /* T

*/
7 ry random far points
8 else
9 goal=(−𝒰(0, 1) × 0.35 + 0.35, −𝒰(0, 1) × 0.45 − 0.22)
10 nb_close,nb_veryclose=calc_distances(goal,ℋ )
11 return goal

Mutation

We apply mutations on candidates parameters in order to increase di-
versity. Some mutations can facilitate optimization while others can
lead to undesirable configurations impairing it. For this reason, we ap-
ply less gradient steps on those mutated parameters. See section 11
for the hyperparameters in this work.

In addition, we generate mutations of a parameter configuration until
it results in a pattern not collapsing after 50 timesteps. For this (ap-
proximate) collapsing measure, we use a simple soft filter checking if
the total mass in the learnable channel at the last timestep is > 10 (
to test for death of matter) and if the mean square error between the
learnable channel at the last timestep and the disk defined in A.1.7
centered on the center of mass of the learnable channel is < 25 (as
a proxy for explosion of the mass, more details in 11). This loop of
mutations is counted in the total number of rollout performed by the
IMGEP.

We refer to section A.1.6 for themutation (distribution, mean, variance)
applied to each parameters in the method.

Gradient descent

Differentiating through Lenia can be difficult because the gradient
must backpropagate through several steps (whichmoreover have their
result clipped between 0 and 1) without vanishing. We should thus
limit ourselves to a few iterations when training: in our experiments
the loss is applied after 50 steps in Lenia.

Obtaining gradients that are informative for optimization requires an
overlapping between the mass in the learnable channel and the disk
centered at the goal position. The curriculumwe introduce in the goal
sampling procedure (7) facilitates this overlap by generating goals
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that neither too far nor too close from the initial pattern at t=0 and
from previously reached goal.

We refer the reader to appendix section A.A.1.3 for an ablation of the
gradient descent showing the importance of it in the method.

Parameter evaluation

We perform an evaluation of the parameters after each IMGEP step
(sampling of goal and optimization of parameters). This evaluation
consists of running 20 rollouts of 50 timesteps (the same rollout length
as in the optimization rollout) with different random obstacle con-
figurations and measures the average reached position over those
rollouts.

For each rollout, we also compute the mean square error between the
learnable channel at the last timestep and the disk shape centered
on the center of mass of the learnable channel at last timestep. We
then take the average value over the rollouts. This is used as a proxy
“collapsing measure” (explosion or death of the pattern) to apply a
soft filter when selecting promising initialization parameter for a new
goal as explained in section 11.

The parameters (𝐴𝑙 , 𝜃𝑙 ), the measured reached position (𝑟𝑥 , 𝑟𝑦 ) and col-
lapsing proxy measure 𝑐 are then stored in the history ℋ .

Reusing historyℋ for a new goal.

Once a goal is selected, we compute the L2 distance between all vec-
tors (𝑐, 𝑟𝑥 , 𝑟𝑦 ) of the history and (𝑐𝑔𝑜𝑎𝑙 , 𝑔𝑥 , 𝑔𝑦 ), where 𝑔𝑥 and 𝑔𝑦 are the
(x,y) coordinate of the goal and 𝑐𝑔𝑜𝑎𝑙 is a constant equal to 0.065 in
this work. These L2 distances are used to select a point in the his-
tory reaching a position close to the goal while mitigating the risk of
collapsing.

In addition to these L2 distances for the selection of potential candi-
dates for a new goal, we also filter out the points in the history having
𝑐 > 0.11 allowing to remove the potential collapsing ones even though
they might be close to the goal. We also take into account this col-
lapsing proxy measure as collapsing parameters are hard to recover
from through gradient descent.

The candidate parameter for a goal is therefore the point in the his-
tory which has 𝑐 ≤ 0.11 and which minimize the L2 distance presented
above.

IMGEP search Hyperparameters

▶ Number of IMGEP steps : 120
▶ History initialization : 40 trials of random parameters.
▶ In 4 out of 5 IMGEP step, we mutate the candidate parameter
before gradient descent.

▶ Number of gradient steps : 125 when no mutation beforehand
(1 out of 5 IMGEP steps) , 15 when mutation beforehand.



A Appendix 178

▶ Rollout length : 50 timesteps
▶ Grid size : 256x256
▶ Number of obstacle during the search: 8
▶ Initialization position on the 256x256 grid: [36:76,105:145]

A.1.8 Basic obstacles tests and generalization tests

Note that the tests we provide are proxy measure of agency/stability,
and so what we present here are what we consider in this paper as
agency. It is for example impossible to test for infinite time stability
in finite time budget. Our stability tests are based on previous work
on Lenia [234].

Empirical agency test

We describe here the agency test used in the paper:

We first apply a prefilter to the obtained parameters by running a
rollout of 500 steps with the obtained parameters. From this roll-
out, we measure if the mass at the last timestep was strictly above
0 (not dead) and below 6400 (explosion). The number are arbitrary
and relatively “loose” so that we reject nearly no “false positive”. This
prefilter allows to throw out obvious non interesting parameters to
reduce the computational cost of testing all obtained parameters –
especially for the random search method where many of them are
not interesting.

We then do rollout of 2000 timesteps for the empirical agency and
moving test. The rollout is long (especially relative to the 50 timesteps
of the search) in order to probe for long term stability. We compute
some stats, from the rollout observations, which are used for the em-
pirical agency test (and moving test) of the parameters inspired by
[234].

The empirical agency test consist of :

▶ Measuring if the mass of the learnable channel is > 0 and < 6400
(∼10% of the map) at the last timestep of the rollout as those
correspond to collapse and explosion.

▶ Measuring if the average mass is augmenting or decreasing too
much between 2 windows of the rollout. This is a proxy measure
for long term instability meaning that a big loss or increase of
mass between the 2 windows is most of the time an indicator for
long term instability. In this work, wemeasure the ratio between
the average mass during the 0 to 500 window and 1500 to 2000
window. If this ratio is greater than 2, the parameters do not
pass the test. The windows are relatively large to still allow for
variation of mass during a rollout and the formation of a pattern
in the first window.

▶ We also want the emerging pattern to be a spatially localized
Soliton (ie pattern forming a single entity not expanding indef-
initely, with a bounded radius). To measure this, we perform a
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connectivity analysis of the pattern depending on the kernel ra-
dius, rejecting patterns where two distinct blobs of mass cannot
influence each other (distance between blobs ≥ 𝑅 ∗ 𝑚𝑎𝑥(𝑟)).

Moving test

To test if a pattern passing the empirical agency test is moving, we
measure if the center of masse of the learnable channel moved fur-
ther than 100 pixels from the initialization position at any point during
the 1000 first steps of the rollout.

Speed measure

To measure speed of agents, we use the 2000 timesteps rollout com-
puted in the filter phase and track the average distance travelled by
the center of mass of the agent on sliding overlapping windows of
size 25 starting from timestep 150 to timestep 2000. The result is di-
vided by 25 (the size of the sliding window) in order to have a per
timestep average distance travelled. We use a sliding window to filter
slight back and forthmovement of the center of mass (which can even
be due to self organization without clear “movement” of the whole).
Note that we compute the speed only for agents passing the filters
above.

The same is done to measure speed with obstacles but we average
on the 50 rollouts with random obstacles computed in the robustness
test. The only small modification is that if an agent does not pass the
survival tests above on the rollout (for example its mass reaches 0 ),
we set the speed for this rollout to 0.

Basic obstacles tests

We then test the parameters leading to moving agents by perform-
ing 50 rollouts of 2000 timesteps where obstacles are the same as
in training i.e. obstacles of radius 10. We place 24 obstacles in the
whole grid (compared to only the right part of the grid in training),
from which 23 are randomly placed and one being in the trajectory of
the moving agent to be sure that it will encounter at least one obsta-
cle in the rollout. To do this we look at the achieved position of the
moving agent without obstacle at timestep 1000 and put an obstacle
here in the test for every rollout. We also remove any obstacle pixel in
the initialization area (pixel of the learnable channel > 0 at the initial-
ization) as well as in a radius of 10 pixels (euclidian distance) of the
initialization (to let some space for the initialization to develop).

From the observations of the rollout we compute the same statistics
and same categories used for the agency test. To get the robustness
measure we then measure the fraction of rollout where the pattern
pass the empirical agency test.
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Generalization tests

Here is a full description of each of the generalization test conducted
in the Generalization section in the main text. For all the quantitative
generalization tests, we used the same robustness test as above ex-
cept that we do it on 10 random trials instead of 50: we run rollout of
2000 timesteps, then measure if it fulfills the empirical agency test.
The measure of robustness is again measured by the proportion of tri-
als where the agent pass the empirical agency test. (hence between
0 and 1).

We also provide a more detailed table of generalization results in
Tab.A.2 adding also agents obtained through random search and semi-
manual search.

▶ Initialization noise. In this experiment, we add a centered gaus-
sian noise to the pixel of the initialization square 𝐴1. In the first
test “init noise rate” we vary the proportion of pixels affected
by this gaussian noise, testing proportions [0.2,0.4,0.6,0.8,1.], and
keep the variance fixed to 1. In the “init noise std” test, we apply
the noise to all pixels of the initialization but vary the variance
of the gaussian in [0.5,1.5,2.5,3.5,4.5].

▶ Obstacles In all of these test we also remove obstacles pixel
from the initialization square and in a radius of 10 pixels (eu-
clidian distance) around it.

• Obstacle radius In this test, we vary the radius of the obsta-
cles in [4,7,10,13,16]. The number of obstacles varies accord-
ing to the radius of obstacles to keep the same ratio of ob-
stacle pixels with the default one which is 24 obstacles of
radius 10. The formula is Number obstacles = 24×(10/𝑣𝑎𝑟)2.

• Obstacles number In this test, we vary the obstacle num-
ber keeping the radius fixed to the default one (radius=10).
We try obstacle number= [24, 30,36,42 ,48] .

• Obstacle speed. In this test, we change the dynamic of the
obstacle channel so that obstacle move at a certain speed
as detailed in A.1.6. For a speed of 1, the obstacle channel
is shifted of 1 on the left at every timestep, for a speed of
0.5, the obstacle channel is shifted of 1 every 2 timesteps.
We tested obstacle speed of [1/3,1/2,1,2,3]. In this test we
put 24 obstacles of radius 10.

▶ Scale In this test, we vary the scale of agents by changing their
kernel size multiplying the parameter 𝑅 of the simulation by
the factor. A smaller (resp bigger) size of kernel means that the
convolution will cover a smaller (resp bigger) neighbourhood.
We also change the initialization size by a factor 𝛼 to match the
scale. To do this, we use a downscaling (or upscaling) of the
initialization 40 × 40 square with bilinear interpolation. We test
both smaller sizes : 0.15,0.65 , as well as bigger sizes: 1.15,1.65,2.15.

▶ Update. In this tests, we perturb the update (what is added to
the current state) from step 0 until step 1900. We let the step
from 1900 to 2000 free of update perturbation to allow the rule
to recover until step 2000 for the statistics computation.

• Update mask In this test, for a value of update mask 𝑝 < 1,
every pixel has a probability p of being updated while the
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rest of the pixels will keep the same value. This does not
apply to the update applied by the obstacles. For a value
1 < 𝑝 < 2, each pixel is updated one time using the up-
date rule normally (sensing and add of growth) giving a
new state and then each pixel is updated again from this
new state with a 𝑝 − 1 probability (the sensing on the po-
tential second random update is done by sensing the new
state). We test the update mask rate in [0.2,0.6,1.,1.4,1.8].

• update noise std In this test, we add noise to the update
of the learnable channel before the clipping as such :

𝐴𝑡+1
𝑙 = 𝐴𝑡

𝑙 +
1
𝑇 (𝐺(𝐾 ∗ 𝐴𝑡 ) + 𝒩 (0256×256, 𝜎𝕀256×256))

where 𝒩 (𝜇, Σ) is a gaussian vector of mean 𝜇 and variance
Σ. We vary 𝜎 in [0.5, 1.5, 2.5, 3.5, 4.5]

• Update noise rate. We add noise to the update of the learn-
able channel before clipping. Every pixel has a probability
𝑝 ∈ [0.2, 0.4, 0.6, 0.8, 1.] to have a gaussian noise of mean 0
and variance 1.

▶ Morphological computation/ Hand damage. In this test, we al-
low an exterior experimenter to pause the simulation and put
pixels of the learnable channel to 0. After the damage, we then
let the simulation unroll as usual starting from the damaged
state 𝐴𝑑𝑎𝑚𝑎𝑔𝑒𝑑

𝑙 .
▶ Interactions (Multi agents setting). We allow to put several ini-
tialization square in the learnable channel. As the update rule
apply to all the grid the same way, if a couple (initialization
square, update rule) already led to a an agent in the case of a
single initialization square then several of them that are not in-
terfering ( further enough so that the convolution of a pixel of
one does not contains pixels of the other) will lead to several
agents.

▶ Custom obstacles. We allow an experimenter to freely draw ob-
stacle in the grid. This allows to have obstacles with shapes not
seen during training.

▶ Custom init states In this test, we replace the initialization of
the pattern (that was optimized) by simple arbitrary shape such
as disk with a gradient (the gradient being to have an asymme-
try for movement), disk of large size etc. The web demo at
http://developmentalsystems.org/sensorimotor-lenia-companion
also allows to load any image as initialization of the system.

▶ External control This experiment consists in adding a new chan-
nel (a new type of cell) to the system which we want to act as
an attractive element. We conducted a semi handmade search
in order to search for a rule, sensing in the attractive channel
and updating the learnable channel, leading to this attractive
behavior.
Note that this attractive element should attract but not disturb
too much the matter as we don’t want the attractive matter to
be able to destroy the agent dynamics.
In fact, we first searched for a rule tuned for one agent found
with the IMGEP search (ie one parameter point (𝐴𝑙 , 𝜃𝑙 )). By doing
so, the rule is adapted to the dynamic of this specific agent (for

http://developmentalsystems.org/sensorimotor-lenia-companion
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example different agents might have different range for pixel
value or growth etc).
The search for a rule (tuned for a specific agent) is semi hand-
made. We first preselect some rule parameters from a set of
random rules. The preselection is done by moving a circle of
attractive mass along a predefined straight trajectory in an en-
vironment with a moving agent. We then look if the attractive
mass and the agent overlaps at the last timestep which should
mean that the agent followed this attractive mass. An experi-
menter then select by hand the rules that lead to attraction of
mass without too much perturbation by controlling the mass
of attractive matter in a real time simulation with the moving
agent.
After searching for a rule for a specific agent, we then tested
it on some other moving agents obtained with IMGEP. Some
agents (some parameters (𝐴𝑓 , 𝜃𝑓 )) are more prone to work with
it (meaning attraction while not affecting the stability too much)
while it destroy the stability of others. The reported qualita-
tive results on this test are performed on agents where the rule
leads to stable attraction.

A.1.9 Comparison baselines

Random search details

We use uniform sampling of parameters with the ranges given in
A.1.6.

The initialization 40x40 square is randomly sampled with each of the
pixel constituting it being independently sampled following a uniform
distribution between 0 and 1.

“Handmade” agents (from original Lenia paper)

The parameters from this dataset are the one from the original Lenia
paper [8, 9] (following these links: https://github.com/Chakazul/Lenia/tree/master/Python/found,
and https://github.com/Chakazul/Lenia/blob/master/Python/old/animals.json).
Contrary to the rest of the paper we use the classic parameteriza-
tion of Lenia for the agent channel. We filter out those that have
more than one channel or an initialization that has a side bigger
than 256. We then apply the pre-filter and filter as explained in sec-
tion A.1.8. We provide the resulting parameters in the data folder of
https://github.com/flowersteam/sensorimotor-lenia-search.

In the handmade search from the original Lenia papers, self-organizing
patterns were discovered by basic evolutionary algorithms, through
one of these routes: (1) random parameter values and initial patterns;
(2) start from an existing moving pattern and mutate the parameter
values; (3) manual editing of the initial pattern.

https://github.com/Chakazul/Lenia/tree/master/Python/found
https://github.com/Chakazul/Lenia/blob/master/Python/old/animals.json
https://github.com/flowersteam/sensorimotor-lenia-search
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A.1.10 Movie legends

You can find all movies on this companionwebsite https://developmentalsystems.org/sensorimotor-
lenia-companion/.

▶ Movie S1: Sensorimotor agents Different agents (yellow) emerg-
ing from rules obtained by the IMGEP. The agents display senso-
rimotor capabilities: they are robust and react to perturbations
by the obstacles (blue). The righmost video shows the system
with a different colormap (fixed obstacle channel in black) to
highlight the differences in activity in the agent as a response
to perturbation.

▶ Movie S2: Random search Each 100 squares are random param-
eters trials (each 1 channel and 10 rules so 1̃30 parameters for all
the rules of a square). We observe that a lot of random search
trials lead to death or explosion of the mass. Very little lead to
stable spatially localized pattern and even less to moving ones.

▶ Movie S3 Orbium, moving agent from the original lenia papers,
fragile to external perturbations S3.a: Orbium: the equivalent
of the glider in Lenia (from the original lenia paper), an example
of moving agent. S3.b and S3.c videos: collision between several
orbium leading to death/explosion. This shows the fragility of
the orbium to external perturbations.

▶ Movie S4 Orbium perturbed by obstacles Orbium, equivalent
of the glider in Lenia (from the original lenia paper), dies from
perturbations by obstacles.

▶ Movie S5: Agents obtained by each method 100 Patterns pass-
ing our agency tests obtained by eachmethod: random search(S5.a),IMGEP
(S5.b), handmade search ((S5.c)from Lenia original papers). A lot
of IMGEP obtained agents are moving agents with high speed
while a lot of agents obtained by random search are static.

▶ Movie S6: Moving obstacle test on agents obtained by each
method 100 Agents obtained by random search(S6.a),IMGEP(S6.b),
handmade search ((S6.c) from Lenia original papers). We ob-
serve that the proportion of agents with robustness to moving
obstacles is much higher in the agents obtained by IMGEP than
the ones obtained by random search and handmade search.

▶ Movie S7: Illustration of the quantitative generalization tests
performed See companionwebsite https://developmentalsystems.org/sensorimotor-
lenia-companion/. Videos of quantitative tests for 2 moving
agents obtained by IMGEP. We display only a subset of the value
tested for every quantitative test.

▶ Movie S8: Out of distribution obstacles: Different shapes Test
of a moving agent obtained by IMGEP on obstacles that were
not seen during training.

▶ Movie S9: Out of distribution obstacles: maze. Test of a moving
agent to maze like obstacles.

▶ Movie S10: Out of distribution obstacles: Bullet like obstacles
Test of a moving agent to bullet like environment: fast small
moving obstacles.

▶ Movie S11: Individuality preservation Example of moving agents
obtained by IMGEP colliding while keeping their individuality,
they don’t merge or collapse from the collision.

https://developmentalsystems.org/sensorimotor-lenia-companion/
https://developmentalsystems.org/sensorimotor-lenia-companion/
https://developmentalsystems.org/sensorimotor-lenia-companion/
https://developmentalsystems.org/sensorimotor-lenia-companion/
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▶ Movie S12: Reproduction For some moving agents, under spe-
cific conditions, the collision of 2 agents can lead to the self-
organization of a 3rd agent. (each with its own individuality)

▶ Movie S13: Attraction Example of moving agents attracting each
other while still maintaining their own individuality.

▶ Movie S14: Asynchronous update Testing a moving agent with
asynchronous updates. Each cell is updated with a certain prob-
ability at each step leading to cells being asynchronously up-
dated.

▶ Movie S15: Scaling the agents down The moving agents size is
reduced. The scaled down agents still seem to behave similarly
(same shape and have sensorimotor capabilities) to the normal
size one while being composed of less cells.

▶ Movie S16: Morphological computation We pause the simula-
tion and remove some cells of a moving agent. As a response
to this alteration of the structure, the moving agent changes di-
rection, regrow itself and moves away. This video isolates the
fact that the macro agent senses perturbations of its structure
and respond to it by a morphological growth.

▶ Movie S17: External control. We introduce an attractive element
in another channel (in Cyan). We learned the rule that control
the way this external element channel influences the learnable
channel(Yellow) and display the resulting behavior here. The
moving agent is effectively attracted to this introduce compo-
nent. By controlling the external element we can control live
the direction of the moving agent.

▶ Movie S18: Robustness to initialization Testing the robustness
of the learned rule to emerge an agent from different initial
patterns. We replace the learned initial pattern by : S18.a a disk
with a gradient; S18.b a large disk (much larger than an agent);
S18.c top a disk with gradient of another size, bottom a disk with-
out gradient. Some initialization lead to the robust emergence
of one or several agents while some lead to the collapse of the
pattern.

▶ Movie S19: Examples of agents considered non moving by our
moving test
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Tests IMGEP Random Handmade
speed> 1 10 best 10 best 10 best

speed 1.33 ± 0.28 1.94 ± 0.15 0.53 ± 0.25 0.34 ± 0.10
obstacle
number

24 0.98 ± 0.07 0.99 ± 0.03 0.99 ± 0.03 0.99 ± 0.03
30 0.98 ± 0.07 1.00 ± 0.00 0.99 ± 0.03 0.99 ± 0.03
36 0.99 ± 0.06 1.00 ± 0.00 0.99 ± 0.03 0.97 ± 0.09
42 0.99 ± 0.03 1.00 ± 0.00 0.99 ± 0.03 0.97 ± 0.09
48 0.99 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.06

radius
4 0.92 ± 0.18 0.90 ± 0.13 0.92 ± 0.12 0.95 ± 0.09
7 0.98 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.09
10 0.98 ± 0.07 0.99 ± 0.03 0.99 ± 0.03 0.99 ± 0.03
13 0.98 ± 0.08 0.99 ± 0.03 1.00 ± 0.00 0.99 ± 0.03
16 0.98 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

speed
1/3 0.99 ± 0.04 1.00 ± 0.00 0.77 ± 0.27 0.74 ± 0.28
1/2 0.97 ± 0.07 1.00 ± 0.00 0.61 ± 0.38 0.51 ± 0.38
1 0.81 ± 0.23 0.97 ± 0.05 0.42 ± 0.41 0.02 ± 0.04
2 0.34 ± 0.32 0.71 ± 0.25 0.13 ± 0.29 0.00 ± 0.00
3 0.12 ± 0.15 0.32 ± 0.17 0.07 ± 0.12 0.00 ± 0.00

update
mask rate

0.2 0.99 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
0.6 0.99 ± 0.08 1.00 ± 0.00 0.89 ± 0.30 1.00 ± 0.00
1.0 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
1.4 0.99 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
1.8 0.99 ± 0.10 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

noise rate
0.2 0.91 ± 0.28 0.90 ± 0.30 0.77 ± 0.37 0.99 ± 0.03
0.4 0.75 ± 0.42 0.91 ± 0.27 0.74 ± 0.38 0.92 ± 0.18
0.6 0.67 ± 0.45 0.90 ± 0.27 0.58 ± 0.46 0.77 ± 0.38
0.8 0.60 ± 0.47 0.63 ± 0.44 0.50 ± 0.44 0.71 ± 0.44
1.0 0.51 ± 0.47 0.32 ± 0.41 0.44 ± 0.45 0.70 ± 0.46

noise std
0.2 0.99 ± 0.11 1.00 ± 0.00 0.96 ± 0.12 1.00 ± 0.00
0.6 0.79 ± 0.39 0.90 ± 0.30 0.76 ± 0.39 0.98 ± 0.06
1.0 0.51 ± 0.47 0.32 ± 0.41 0.44 ± 0.45 0.70 ± 0.46
1.4 0.08 ± 0.21 0.03 ± 0.09 0.18 ± 0.32 0.56 ± 0.45
1.8 0.06 ± 0.14 0.06 ± 0.10 0.17 ± 0.30 0.45 ± 0.47

init
noise rate

0.2 1.00 ± 0.01 1.00 ± 0.00 0.89 ± 0.16 1.00 ± 0.00
0.4 0.99 ± 0.09 1.00 ± 0.00 0.91 ± 0.24 0.99 ± 0.03
0.6 0.98 ± 0.13 1.00 ± 0.00 0.88 ± 0.30 0.95 ± 0.15
0.8 0.97 ± 0.14 1.00 ± 0.00 0.88 ± 0.30 0.89 ± 0.24
1.0 0.95 ± 0.21 1.00 ± 0.00 0.88 ± 0.30 0.76 ± 0.29

noise std
0.5 0.97 ± 0.16 1.00 ± 0.00 0.87 ± 0.30 0.97 ± 0.09
1.5 0.94 ± 0.20 0.98 ± 0.06 0.85 ± 0.30 0.52 ± 0.42
2.5 0.89 ± 0.27 0.92 ± 0.17 0.80 ± 0.36 0.37 ± 0.44
3.5 0.86 ± 0.32 0.91 ± 0.27 0.81 ± 0.34 0.35 ± 0.45
4.5 0.85 ± 0.32 0.94 ± 0.18 0.79 ± 0.38 0.32 ± 0.43

scaling
0.15 0.91 ± 0.28 0.90 ± 0.30 0.30 ± 0.46 0.00 ± 0.00
0.65 0.99 ± 0.10 1.00 ± 0.00 0.50 ± 0.50 1.00 ± 0.00
1.15 1.00 ± 0.00 1.00 ± 0.00 0.70 ± 0.46 1.00 ± 0.00
1.65 1.00 ± 0.00 1.00 ± 0.00 0.70 ± 0.46 1.00 ± 0.00
2.15 1.00 ± 0.00 1.00 ± 0.00 0.60 ± 0.49 1.00 ± 0.00

Table A.2: Generalization results
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A.2 Appendix: Flow-Lenia: Towards
open-ended evolution in cellular
automata through mass conservation and
parameter localization

A.2.1 Details on the optimization procedure

In this section, we provide details about the optimization of flow lenia
creatures (Sec.1.3.5).

We used evosax lange2022 implementation of the OpenES strategy
with population size of 16 and adam optimizer kingma2017 with 0.01 as
learning rate. We optimized the Flow Lenia update rule with different
number of kernels and either 1 or 2 channels. For comparison, we
also trained original Lenia on the directed motion task following the
same optimization procedure. The initial pattern is composed, as in
random search, of a square patch with non-zero activations placed at
the center of the world and zeros everywhere else. Results are shown
in figure 1.19.a and code used to run experiments is available at this
link.

Directed motion

In order to train creatures displaying directed motion, i.e straight line
motion, we used the distance travelled by the creature as the fitness
function. The distance is calculated by computing the center of mass
of the pattern at step 0 and final step 400. Formally, the fitness func-
tion is defined as :

𝑓 (𝜃) = 𝑑𝑖𝑠𝑡(𝜙(𝐴0), 𝜙(𝐴400))

Where 𝐴 ≡ {𝐴0, ..., 𝐴𝑇 } is the pattern obtained by making a rollout with
parameters 𝜃 for 𝑇 timesteps (here 500). 𝜙(𝐴𝑡 ) ∈ [−0.5, 0.5]2 is the cen-
ter of mass of state 𝐴𝑡 and 𝑑𝑖𝑠𝑡 is the euclidean distance function. We
optimized the system with either 1 or 2 channels and 10 or 20 kernels.

We used 𝑀 = [ 5 5
5 5 ] as the adjacency matrix with 2 channels and

20 kernels and 𝑀 = [ 3 2
2 3 ] with 10 kernels.

Results (see fig 1.19.a) show that good solutions can be found in the 2
channels condition but not in the single channel case. However, when
running the algorithm for longer (e.g 5000 generations), we have been
able to found single channel creatures with similar fitness than their 2
channels counterpart. Increasing the number of kernels led to faster
discovery of good solutions. The best performing creature is shown
in figure 1.19.b . This creature moves because of attraction/repulsion
dynamics between the 2 channels which might explain why directed
motion is much easier to attain withmulti-channels creatures. On the
other hand, the optimization of the original Lenia model is much less

https://colab.research.google.com/drive/18OGQqdzqAZeiTJjHukJ0ieFBlswi4eiG?usp=sharing
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stable, and discovered patterns are less successful than their mass-
conservative counterparts. Moreover, every Lenia optimized patterns
are exploding ones.

Angular motion

In this task, we want emerging creatures to display more complex
forms of motion. More precisely, we want creatures to be able to
move and make turns. As with directed motion, we use the center
of mass of the creature through time to compute its trajectory. The
fitness function is the following :

𝑓 (𝜃) = 𝑑𝑖𝑠𝑡(𝜙(𝐴0), 𝜙(𝐴200))
+ 𝑑𝑖𝑠𝑡(𝜙(𝐴200), 𝜙(𝐴400))
+ ∠[𝜙(𝐴200) − 𝜙(𝐴0)] [𝜙(𝐴400) − 𝜙(𝐴200)]

Where ∠𝑎𝑏 is the angle between vectors 𝑎 and 𝑏. The first two terms
are the distance travelled from step 0 to step 200 and from step 200
to step 400. The last term is the angle between these two trajec-
tories which is maximal when they are opposite. In order to avoid
large angles to come from very small movements, the angle is set to
0 when distance traveled either before or after step 200 is below a
given threshold. The optimal behavior for this fitness function is then
to move fast in one direction, make a 180° turn, and then move fast in
the opposite direction. We used 2 channels, 20 kernels and the same
connectivity matrix as for directed motion.
Result are shown in figure 1.19.a. The best performing creature, shown
in figure 1.19.c, displays very complex internal dynamics leading it to
periodically make 180° turns while moving in straight line the rest of
the time. These dynamics seem to be generated by attraction repul-
sion dynamics like the ones observed in directed motion but here in
a more intricate morphology.

Navigation through obstacles

In this task, we want to see if creatures can navigate through obsta-
cles as done in contribution Sec.1.2. To do so, we added walls which
are implemented by adding a strong flow going from the center of
walls outwards, thus strongly repelling the creature and acting as a
solid obstacle. At each evaluation of the optimization process, we
randomly sample points on a circle surrounding the creatures’ initial
positions to be walls positions thus making a “forest” of walls around
the creature. We then optimize the creature with the same fitness
function as in the directed motion task so creatures have to go as far
as possible and so through the forest. We made the experiment with
2 channels creatures, walls are defined in a separate third channel.

We used 25 kernels and 𝑀 = [
5 5 0
5 5 0
5 0 0

] as the connectivity matrix

so creatures are able to sense the walls channel (3rd channel).
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We have been able to successfully train creatures able to move and
stay robust when making contact with walls such as the one shown
in figure 1.19.d which is able to resist deformation and find a way out
the “forest”. In comparison, solving a similar task in Lenia required
complex optimization methods based on curriculum learning, diver-
sity search and gradient descent over a differentiable CA in Sec.1.2.
However, such a comparison is difficult because Flow Lenia creatures
are inherently more robust due to conservation of mass, whereas Le-
nia creatures can disappear because of perturbations.

Chemotaxis

Another important feature of natural life-forms is the ability to sense
their environment in order to find food or avoid dangers through
chemotaxis. In this task, we want creatures to be able to sense a
“chemical” gradient and climb it towards its maximum. To do so, we
added a separate channel Γ ∶ ℒ → ℝ≥0 whose activations are defined
following a Gaussian function around a point randomly sampled on
a circle surrounding the center of the CA for each evaluation of the
optimization process ensuring creatures learn to follow the gradient
and not a fixed direction while keeping the distance to cover constant.
We also added 5 kernels and growth functions from Γ to 𝐴, which are
also optimized, so the creature is able to sense the chemical. The
fitness of an individual is then computed with the following function
:

𝑓 (𝜃) = ∑𝑥∈ℒ 𝐴500Σ (𝑥) × Γ(𝑥)
∑𝑥∈ℒ 𝐴500Σ (𝑥)

Since mass is conserved, the optimal behavior for a creature is to
concentrate as much of its mass in the cells where Γ is maximal.
We have been able to find good solutions to this task as shown in
figure 1.19.a . Best solutions such as the one shown in figure 1.19.e are
perfectly able to climb the gradient towards its maximum.

A.3 Appendix: Eco-evolutionary Dynamics of
Non-episodic Neuroevolution in Large
Multi-agent Environments

A.3.1 Details of the simulation

Environment

Our simulation environment is an extension of the CPR environment
[300, 301] that the AI community has been using to study the emer-
gence of cooperation in groups of self-interested agents: a two-dimensional
grid-world where some cells contain resources (in green) that the
agents (in black) can collect. Resources grow depending of the pres-
ence of other resources around them, which means that there is a
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positive feedback loop, with reduction in resources leading to further
reductions. In addition to resources, the environment may contain
walls (in blue) that kill agents trying to traverse them (see Figure 2.3
for an illustration of our environment).

At each time step 𝑡 of the simulation a resource may grow in a pixel in
a cell of the environment with location (𝑥, 𝑦) based on the following
three processes:

▶ a neighborhood-dependent probability 𝑝𝐼 (𝑥, 𝑦) determines the
probability of regrowth in a cell based on the number of re-
sources in its neighborhood, 𝐼

▶ a niche-dependent scaling factor 𝑐(𝑥) is used to scale 𝑝𝐼 . We em-
ploy a latitudinal niching model used in previous studies [302,
312]: the world is divided into 𝑁 niches, each one having the
form of a horizontal stripe of pixels so that a cell’s location de-
pends only on its vertical position 𝑥 . We refer to 𝑐(𝑥) as the
climate value of niche 𝑥 .

▶ independently of its neighbors and niche, a resource grows with
a constant low probability 𝑐. This is what we refer to as (sparse)
spontaneous growth.

By modeling resource generation in this way we ensure that the re-
source distribution follows the CPR model, that it exhibits additional
spatio-temporal variability due to the presence of niches and that
resources do not disappear too easily, which can be problematic in
reset-free environments. Thus, the combined regrowth rate for a re-
source 𝑟 is:

𝑝(𝑥, 𝑦) = 𝑝𝐼 (𝑥, 𝑦) ⋅ 𝑐(𝑥) + 𝑐 (A.1)

A niche’s climate value is determined by equation: 𝑐(𝑥) = (𝛼𝑥 +1)/(𝛼 +
1), which returns values from 0 to 1 and allows us to control the re-
lationship between niche location and climate to be from linear to
exponential.

The agents

At each time step there is a variable number of agents 𝐾𝑡 in the envi-
ronment, each one characterized by its sensorimotor ability, cognitive
capacity and physiology.

Sensorimotor ability An agent observes pixel values at each time
step within its visual range (a square of size [𝑤𝑜 , 𝑤𝑜] centered around
the agent, as illustrated in the bottom right part of Figure 2.3). The
pixel values contain information about the resources, other agents
(including their number) and walls. At each time step an agent can
choose to stay inactive or execute an action to navigate up, down,
right or left.
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Cognitive capacity An agent is equipped with an artificial neural net-
work that outputs the action to undertake based on the current obser-
vation and whose weights are initialized randomly once at the start
of the simulation. Its architecture (illustrated in the bottom right part
of Figure 2.3) is minimal: a convolutional neural network, an LSTM cell
that equips the agents with memory by enabling policies conditioned
on a trajectory of observatories and a linear layer that transforms hid-
den states to actions.

Physiology An agent is equipped with a simple physiological model
modulating its level of energy: the agent is born with an initial energy
value 𝐸0 which, at every time step, experiences a linear decrease, and,
if the agent consumes a resource, is increased by one (see the top
right part of Figure 2.3 for an illustrative example of how the energy
level may change within the lifetime of a hypothetical agent). The
energy is also clipped to a max value 𝐸𝑚𝑎𝑥 .

Non-episodic neuroevolution

In neuroevolution (NE) a population of neural networks adapts its
weights through random mutations and a selection mechanism that
promotes well-performing policies. Under a classical NE paradigm
training time is divided into generations, at the end of which agents
reproduce to form the next generation [99, 304].

Our proposed system deviates from this paradigm in two respects:

▶ agents do not reproduce according to their fitness but according
to a minimal criterion [303, 437] on their energy level;

▶ evolution is non-episodic: upon satisfying certain criteria an
agent reproduces locally (the off-spring appears on the same
cell as its parent), so that agents are added in an online fashion
to the population, removing the need for a concept of genera-
tion.

Reproduction In order to reproduce an agent needs to maintain its
energy level above a threshold 𝐸min for at least 𝑇repr time steps. Once
this happens the agent produces an off-spring and is a candidate
for reproduction again. Thus, agents may have a variable number
of off-spring and do not die upon reproduction. We illustrate this
relationship between energy level and reproduction in the top right
part of Figure 2.3. Reproduction is asexual: an agent’s weights are
mutated by adding noise sampled from 𝒩 (0, 𝜎)

Death An agent dies once its energy level has been below a thresh-
old 𝐸min for at least 𝑇death time-steps or if its age is bigger than a
certain value 𝐿max. Once this happens, the agent is removed from
the population forever.
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Hyperparameters of the simulation

Below we provide the values of all hyper-parameters of the environ-
ment:

▶ grid size : 400x200
▶ Max population :1000 agents
▶ Starting population : 330 agents randomly placed
▶ Starting resources : 16 0000 randomly placed resources (there
can only be at most 1 resources at one pixel)

▶ Field of view of agents 𝑤𝑜 : 15 (15x15 square with 7 in every di-
rection)

▶ Total number of timesteps : 1e6
▶ Mutation variance 𝜎 : 0.02
▶ Energy function parameters :

• Time to reproduce 𝑇𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒 : 140 timesteps
• Time to die 𝑇𝑑𝑒𝑎𝑡ℎ: 200 timesteps
• Max energy 𝐸𝑚𝑎𝑥 = Starting energy 𝐸0 : 3
• Energy death 𝐸𝑑𝑒𝑎𝑡ℎ : 0
• Energy decay : 0.025
• Increase in energy when eating a resource : 1
• Maximum age : 650

▶ Regrowth function
• 𝑝(𝑥, 𝑦) = 𝑝𝐼 (𝑥, 𝑦) ⋅ 𝑐(𝑥) + 𝑐
• 𝑝𝐼 (𝑥, 𝑦) = 𝟙𝐼=1 ∗ 0.002
• 𝐼 corresponds to the 4 direct neighbors
• 𝑐(𝑥) = (𝛼𝑥+1)

(𝛼+1) with 𝛼 = 200
• c = 0.00005

The simulation of the environment with a large number of agents
and 1e6 timesteps took 20 minutes on a single GPU thanks to JAX
parallelization and speedup.

Details of agents architecture

The observation of the agent is fed into a 2 layer Convolutional neural
network (CNN) : First CNN has a kernel size (3,3), stride 2 and number
of features 4 followed by an average pooling of size (2,2) and stride 1 ,
the second CNN has a kernel size (3,3, stride 2 and number of features
8 followed by an average pooling of size (2,2) and stride 1. The output
of the CNN is then flattened and we concatenate to this vector the
previous action of the agent as well as a binary telling if the agent
has eaten a resources or not. This embedding is then fed into the
LSTM of hidden state size 4 and we concatenate the embedding with
the output of the LSTM. The vector obtained is then fed into a dense
layer of size 8 and a tanh activation function. We finally apply a last
denser layer of size 5 (the number of actions) with softmax to get the
action probability fromwhich the action will be sampled. The softmax
we use has a low temperature (1/50), so that the evolution can quickly
learn non random policy.
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Figure A.13:Heatmap of the amount of individuals in
17 bins of the distance traveled during a time win-
dow in seed 1. y axis corresponds to the bins while
x axis is the timesteps of the natural env simula-
tion. On the bin (y axis) 0 are agent that traveled
a very small distance while 16 are agent that cov-
ered a long distance (nearly the maximum amount
of distance you can travel during the 50 timesteps
window)

Figure A.14: Metrics on seed 1: a) life expectancy
of agents, b) total number of resources present in
the environment, c) size of the population and d)
percentage of individuals with different amount of
movement

In total the agent neural network is very small with only 2445 parame-
ters. We chose a small neural network in order to make the evolution
learning easier.

A.3.2 Details on measures and evaluation

The metrics used to characterize the system in the natural and lab
environment are:

▶ Amount of resources in the map : sum over the whole grid of
the resource channel

▶ Population size: Number of individual alive in the simulation
▶ Expectancy : Average of age of agent that died during a large
time window of 500 timesteps.

▶ Percentage of the population with different amount of move-
ment : For every agent alive during a time window of 50, we
compute the Manhattan distance between the position at the
last timestep of the window and the position at the beginning
of the window. This gives the distance traveled during this time
window for every agent alive as a number between 0 and 50.
We then make 17 bins out of those 51 possible distance traveled.
We then report in Figure 2.4.B the percentage of the population
in the two extreme bins as well as the max on the other ones.
We provide in Figure A.13 a heatmap displaying the all 17 bins
during the whole natural environment simulation of seed 1.

For statistical testing we employ the ANOVA test to detect differences
across multiple conditions and Tukey’s range test for pairwise com-
parisons. We report as statistically significant differences between
pairs of methods with a p-value lower than 0.05.

A.3.3 Additional results

Large-scale trends

At the large scale several phases can be seen in the evolution of
agents and the environment. In this section, we explore those phases
in seed 1 (which is the seed described in the main paper in section
2.1.4 ) and give some new metrics of the natural environment not
mentioned in the main paper such as mean life expectancy of the
agents.

Population size and life expectancy rise and plateau
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Figure A.15: Metrics on seed 2: a) life expectancy
of agents, b) total number of resources present in
the environment, c) size of the population and d)
percentage of individuals with different amount of
movement

At the very beginning, in the first phase A (fig A.14.A), the environment
contains plenty of resources which leads to an increase in the pop-
ulation. In a second phase (fig A.14.B), the population seem to start
to plateau while the amount of resources is still decreasing. This de-
crease in resources stops in phase C.

During phase A, B and C, the expectancy of the agents increases (fig
A.14.a) suggesting that the agents are becoming better even though
the environment is changing. The expectancy starts to plateau in
phase D where it seems like the environment reaches a more or less
stable state on some metrics.

Decrease in the amount of resources: A near tragedy-of-the-commons.

The decrease in the amount of resources in the environment at the
beginning (fig A.14.b), seems to indicate that the evolving population
as a whole depletes the resources in a greedy way even though more
resources means a higher spawn of resources. The evolutionary path
therefore seems to start by evolving a population which will go to-
wards the tragedy of the common (which is here dampened by the
fact that there are sparse spontaneous growth of resources). This is
confirmed by looking at the environment after some time (fig A.16.a)
where we can see that there are only few patch of resources in some
corner of the map while the majority of the map is constantly de-
pleted. This suggest that at least local tragedy of the common hap-
pens in our simulation.

Seed 2

Figure A.15 displays all metrics we discussed in Section A.3.3 for seed
1, this time measured for seed 2.

Diversity of eco-evolutionary path

We will now study some differences between seed 1 and 2.

In seed 1 sustainable and opportunistic travelers coexist during the
whole evolution (fig A.14.D), while seed 2 has a majority of oppor-
tunistic travelers and some sparse period where low moving agents
emerge (fig A.16.c). This may be explained by the differences in the
environment led by the agents behavior. In fact seed 1 displays some
area where there are big patches of resources (especially in the cor-
ner) (fig A.16.a)) and so where sustainable agents can easily take ad-
vantage of. On the other end in seed 2 (fig A.16.b), the map is com-
pletely depleted of patches of resources which only allows agents

Figure A.16: Left: Diversity of environment between
the 2 seeds (at timestep 600 000, zoom on the bot-
tom right corner), here agents are in red; Right: Per-
centage of the population with different amounts
of movement of seed 2
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Figure A.17: Average efficiency across the popula-
tion across different density levels with reproduc-
tion activated and deactivated. Activating reproduc-
tion leads to increased resource consumption.

to sustain on spontaneous regrowth on random spots of the map,
which might explain why there are so much opportunistic travelers
and nearly no sustainable behavior. The sustainable behavior pic
we can see in seed 2 might be explained by timesteps where some
spot of food were left for some time and so where bigger patches of
resources emerged which might have favored some switches in be-
havior. See Videos 1.a and 1.b of the companion website for a better
visualization of the dynamic and behavior of agents.

The (small) diversity of evolutionary and environment path between
the 2 seeds we present are also an interesting feature of such eco-evo
simulation.

Lab additional results

In this section, we provide additional results on the lab environment.

Fig A.17 shows the average efficiency averaged on the population on
different density of resources (compared to only high resources task
in fig 2.4.D) with reproduction activated and deactived, we observe
that on every resource density, activating reproduction leads to in-
creased resource consumption.

https://sites.google.com/view/non-episodic-neuroevolution-in/
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A.4 Appendix: emergence of agriculture

A.4.1 Details on the simulation.

The environment is a 30x30 grid, where channels represent : agent,
seed green, green plant, seed yellow, yellow plant, water source, wa-
tered cell, purple plant.

Initial plants and water source location are randomly initialized.

During the last 10 timesteps before the end of the summer season,
plants spread seeds in a 3x3 neighbourhood. The cell on which the
plant is has a probability 𝑢𝑐𝑜𝑙𝑜𝑟 to receive a grid at each of these
timesteps while the other 8 cells have a probability 𝑢𝑐𝑜𝑙𝑜𝑟/2. 𝑢𝑔𝑟𝑒𝑒𝑛
and 𝑢𝑦𝑒𝑙𝑙𝑜𝑤 thus control the seed spreading of plants.
The plant that germinates is given by a categorical sampling over the
classes (Nothing, yellow plant,green plant) with the probability vector
𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑉 ) where 𝑉 = (𝑆𝑛𝑜𝑡ℎ𝑖𝑛𝑔 , 𝑆𝑦𝑒𝑙𝑙𝑜𝑤_𝑠𝑝𝑟𝑜𝑢𝑡 , 𝑆𝑔𝑟𝑒𝑒𝑛_𝑠𝑝𝑟𝑜𝑢𝑡 ) and

𝑆𝑔𝑟𝑒𝑒𝑛_𝑠𝑝𝑟𝑜𝑢𝑡 =
𝑁𝑔𝑟𝑒𝑒𝑛_𝑠𝑒𝑒𝑑

1 + 𝑁𝑦𝑒𝑙𝑙𝑜𝑤_𝑠𝑒𝑒𝑑 ∗ 𝛼𝑐𝑜𝑚𝑝𝑒𝑡
∗ 𝑝𝑔𝑟𝑒𝑒𝑛

and

𝑆𝑦𝑒𝑙𝑙𝑜𝑤_𝑠𝑝𝑟𝑜𝑢𝑡 =
𝑁𝑦𝑒𝑙𝑙𝑜𝑤_𝑠𝑒𝑒𝑑

1 + 𝑁𝑔𝑟𝑒𝑒𝑛_𝑠𝑒𝑒𝑑 ∗ 𝛽𝑐𝑜𝑚𝑝𝑒𝑡
∗ 𝑝𝑦𝑒𝑙𝑙𝑜𝑤

and
𝑆𝑛𝑜𝑡ℎ𝑖𝑛𝑔 = 𝑐𝑙𝑖𝑝(1 − (𝑆𝑔𝑟𝑒𝑒𝑛_𝑠𝑝𝑟𝑜𝑢𝑡 + 𝑆𝑦𝑒𝑙𝑙𝑜𝑤_𝑠𝑝𝑟𝑜𝑢𝑡 ), 0, 1)

𝑝𝑦𝑒𝑙𝑙𝑜𝑤 and 𝑝𝑔𝑟𝑒𝑒𝑛 control the base probability of a seed to germinate
while 𝛼𝑐𝑜𝑚𝑝𝑒𝑡 and 𝛽𝑐𝑜𝑚𝑝𝑒𝑡 control the competition between the two
plants.

Seeds disappear from a cell with a probability of 0.0015 at each timestep
and 0.15 at the beginning of summer if not sprouted.

Water on a soil cell evaporates with a probability of 0.005.

A.4.2 Agents architecture details.

The observation of the agent is a flattened vector of the local 11x11
grid around the agent, concatenated with the state of the inventory
and the time of the season. The agent can see other agent in its 11x11
local information on the grid. We also concatenate the observation
with the last action and reward.

Agents use a transformerXL based neural network using the imple-
mentation from Sec.4.3. The transformer has 2 attention layers with
4 heads, an embedding of size 128.

The agent takes as input the 128 last observations (memory size =128,
effective extended memory as we use transformerXL with 2 layers is
256).
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Figure A.18: Heatmap parameter analysis over the spontaneous growth probability of the purple plant 𝑝𝑠𝑝𝑜𝑛𝑡 and the discount factor (favoring
exploration) 𝛾 . We observe a sharp transition from measures indicating foraging strategies (high 𝑝𝑠𝑝𝑜𝑛𝑡 and low 𝜆𝑔𝑎𝑚𝑚𝑎 ; top right part ) to
measures indicating agricultural practices (low 𝑝𝑠𝑝𝑜𝑛𝑡 and high 𝛾 ; bottom left part). Each parameter couple is tested over 3 seeds, we report
the average value. The experiments were performed with 𝜆𝑒𝑛𝑡𝑟 = 0.036

The agent policy has 3 actions head:

▶ 1st action head is to choose among the actions: move (up,down,left,right),
pick, drop, protect.

▶ 2nd action head is to choose the type of resource (water, green
seeds ,yellow seeds) to pick or drop when o

▶ 3rd action head allows to choose whether the agent will harvest
on the cell he currently is. We made it a different head than
the first one so that agent can move and harvest at the same
timestep. (otherwise making the process of removing the com-
peting green plants very costly in time, requiring long season
to allow meaningful engineering, which is hard with RL because
long credit assignment).

A.4.3 Additional results

We report in Fig.A.18, the parameter analysis heatmap (as in Fig.2.6)
over gamma.
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Figure A.19: Learning dynamic when agriculture emerges with reproduction activated. (left) total return vertical line represent new agent birth;
(middle) number of agents; (right) Yellow plant grown. The number of agents steadily until reaching the max of 32, as new agents become
additional workforce to grow more resources.

Figure A.20: Learning dynamic when agriculture does not emerges with reproduction activated. (left) total return vertical line represent new
agent birth; (middle) number of agents; (right) Yellow plant grown. The number of agents reaches a plateau as the agents reach the capabilities
of the environment.

Reproduction and population growth

In this section, we report preliminary results on experiments with pop-
ulation growth in the agricultural environment. We perform the same
training as in Sec.2.2, except that we add reproduction and death dur-
ing agents’ training. More precisely, after a short warm-up period, we
monitor the total return over an episode of every agent and :

▶ ”Reproduce” the agent if it is above a certain threshold: we add
an additional independent agent in the simulation initialized
with the parameters of the agent that just reproduced.

▶ ”Kill” the agent if it is below a certain threshold.

Due to computational limits, the maximum number of agents in these
reported results is 32 (as we have to train all of them, requiring a lot
of compute).

We report in Fig.A.19, the resulting learning dynamic in a simulation
where agriculture emerged. We observe that the number of agents in-
creases rapidly without any collapse. In particular, new agents seem
to lead to a small decrease in reward, which is rapidly recovered,
leading to new additional agents again. Interestingly, the agents pro-
duce much more resources (yellow plant) in the same environment
as the experiments reported in Sec.2.8, showing the ability of the
group of agents to eco-engineer the environment to produce more
resources.
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On the other hand, when agents do not discover agriculture, e.g. when
𝑝𝑠𝑝𝑜𝑛𝑡 is high, the population reproduces fast until it reaches a plateau
(Fig.A.20). In fact, the foraging strategy does not benefit from addi-
tional agents; agents can’t actively grow more resources than what
the environment provides with 𝑝𝑠𝑝𝑜𝑛𝑡 . Therefore, the population of
agents quickly reaches the capacity of the environment and can’t im-
prove its return.

A.5 Appendix: Emergence of Collective
Open-Ended Exploration from
Decentralized Meta-Reinforcement
Learning

A.5.1 Forced Cooperation

We define a task tree as forced cooperative if at least one of the sam-
pled subtasks requires both agents to solve it. We describe the three
forced subtask types below:

Activate Landmarks: Now always two landmarks are randomly spawned
at the edges of the environment. Agents are randomly assigned one
of the two landmarks which they are able to activate. Additionally, the
landmarks now have to be activated within ten environment steps of
each other.

Meeting Point: One landmark is randomly spawned at the edges of
the environment. The agents both have to be at the landmark and
activate it within ten environment steps of each other.

Lemon Hunt: Now one agent is able to switch a specific object into
the lemon object while the other agent is able to consume it.

A.6 Appendix: Autotelic Reinforcement
Learning in Multi-Agent Environments

This appendix provides additional information about our set-up, im-
plemenation details and results of section.3.2.

▶ Section A.6.1 describes our navigation tasks as MDPs;
▶ Section A.6.2 provides the hyper-parameters used in the main
paper;

▶ Section A.6.3 intents to clarify how the different baselines we
have evaluated differ algorithmically;

▶ Section A.6.4 contains an empirical analysis of how the complex-
ity of our proposed algorithms changes with task difficulty;

▶ Section A.6.5 contains additional results. Specifically, Section
A.6.5 shows the effect of environmental complexity, Section A.6.5
shows the effect of message size in the Goal-coordination game,
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Section A.6.5 examines the usefulness of recurrent policies, Sec-
tion A.6.5 replaces random sampling with Learning Progress, Sec-
tion A.6.5 contains experiments where only cooperative goals
are present in the environment, Section A.6.5 presents addi-
tional information about the ”risky follower policy”, Section A.6.5
contains specialization results and Sections A.6.5 and A.6.5 fur-
ther analyze the baseline with both goals observable and CTDE.

A.6.1 Environment details

The environment is implemented in Python using Simple Playgrounds [350].
As a learning algorithm for the goal-conditioned policies we use RL-
lib’s PPO implementation [438] and its multi-agent API with the Py-
Torch backend [439].

For the 3-landmarks environment the set of individual goals is {[001], [010], [100]}
and the set of cooperative goals is {[101], [011], [110]}. For the 6-landmarks
environment the set of individual goals is {[000001], [000010], [000100], [001000], [010000], [100000]}
and the set of cooperative goals is {[110000], [101000], [100100],, [100010],
[100001], [0110000], [010100], [010010], [010001], [001100], [001010], [001001],
[000110], [000101], [000011], [100001]}

Observation space Agents are able to see each other and all the ob-
jects of the environment. We use object-centric representations, the
observation vector contains the distance and the angle to each of the
physical entities in the room (i.e walls, other agent, and landmarks).
The order of the coordinates in the observation vector is preserved,
e.g the first two coordinates are the distance and angle to the left
wall. To make the navigation policy a goal-conditioned one, we con-
catenate the goal representation at the end of the observation vector
to build the input to the networks. Observations are normalized be-
tween 0 and 1.

Action space We consider a discrete action space. Each agent is
controlled by two actions: longitudinal force, and angular velocity.
These actuators can take three different values: -1, 0, or 1.

Rewards and episodes Rewards are given independently to each
agent conditioned on the agent’s own goal. At each time step, if the
goal is not fulfilled, the reward is 0, and 1 otherwise. All interactions
with the environment are fully decentralized, each agent only has ac-
cess to its own reward, and cannot see the reward of the others.

Once an agent gets a positive reward, the episode ends for them, i.e
they cannot perform any other action but remain physically present
in the environment. Episodes end either when both agents obtained
their rewards or if a time limit is reached. At the beginning of an
episode each agent is randomly placed inside the room, without touch-
ing any of the landmarks. The time limit in the environment was set
to 250 and 500 time steps, for the 3 and 6 landmark instances respec-
tively.
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Figure A.21: Performance for the 3-landmarks environment during evaluation (left) and training (right) episodes for baselines exhibiting
different levels of alignment and the Goal-coordination game

A.6.2 Hyperparameters

Hyper-parameters do not vary across methods.

PPO We base most of our design choices in the recommendations
by [440]e:

▶ PPO policy loss with 0.3 clipping threshold.
▶ tanh as activation function for the networks. We don’t use shared
layers for the value and policy networks.

▶ Generalized Advantage Estimation (GAE) [441] with 𝜆 = 0.9
▶ A discount factor of 𝛾 = 0.99
▶ Adam optimizer [291] with a learning rate of 0.0003

From themany hyperparameters we can tune, we found that the batch
size was the most relevant. After some test experiments, benchmark-
ing results with the centralized uniform sampling baseline, we set this
value to 16500 and 60000 time steps for the 3 and 6 landmarks exper-
iments. We observed that usually a higher batch size was beneficial.
For most of the hyperparameters we found that the defaults provided
by RLlib were safe choices.

Goal-coordination game We use a softmax of temperature 𝑇 = 1
30

to sample messages 𝑚𝑙 and goal 𝑔𝑓 from the matrix. The update of
the matrix is made with 𝛼 = 0.1 to dampen the changes of estimates
of expected reward for each goal/message couple.

A.6.3 Illustration of baselines

In Figure A.22 we present an illustration of how the different methods
we evaluate vary in terms of the information available to each agent
and how it is used to condition its policy and value function.
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Figure A.22: Illustration of the different methods em-
pirically evaluated in our work, where we indicate
policies with 𝜋 and value functions with 𝑉 using the
agent indexes as subscripts. The centralized base-
line follows the algorithm proposed by [359], while
the independent and both-goals baselines can be
viewed as the equivalent of independent and joint
learners proposed in the past [442] but for goals in-
stead of state-actions.

A.6.4 Insights into training complexity

Understanding how our proposed solution performs as the number
and difficulty of goals increases is useful for future applications of
the Goal-coordination game tomore complex settings. This algorithm
is faced with the task of simultaneously learning how to align goals
and learning how to solve them. In contrast, the centralized base-
line (100%-aligned) is only faced with learning how to solve goals. To
disentangle the difficulty of these two tasks we here study the com-
plexity of these two methods in terms of two parameters: a) the size
of the goal space b) the difficulty of achieving goals. To disentangle
these two effects we make the following comparisons:

For a) we compare the training and evaluation performance of the
two algorithms between the 3-landmarks and 6-landmarks environ-
ment when only cooperative goals are considered (thus only goals of
equal difficulty). For b) we compare the training and evaluation per-
formance between a setting where we train on both individual and
cooperative goals and a setting with only cooperative goals, both in
the 6-landmarks environment. Since the total number of goals is 21
and there are 6 individual goals, the latter setting contains about 70%
more difficult goals.

We present results in Figure A.23 for the effect of goal space size and in
Figure A.24 for the effect of goal difficulty. Regarding the goal space
size, we observe that doubling the size of the goal space leads to
about four times slower convergence. This is intuitive as the number
of goals changes from 6 (in the 3-landmarks) to 21 (6-landmarks), so
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Figure A.23: Computational complexity of the Goal-
coordination game and 100%-aligned for environ-
ments with different numbers of landmarks

more time is required to master the goals. This is also true for the
centralized baseline, meaning that the increase in complexity is due
to the need to learn more policies, rather than the need to align more
goals. Regarding the goal difficulty, we see that the algorithm learns
to solve quicker the task that has both individual and cooperative
goals. Thus, although the number of goals increased the convergence
time decreased. This is because the individual goals are solved more
easily and then facilitate solving the cooperative goals. The same
behavior is observed for the centralized baseline.

A.6.5 Additional results

3-landmarks environment

Figure A.21 contains the evaluation performance, on the left, and train-
ing performance, on the right for the 3-landmarks environment. We
observe that, compared to the 6-landmarks environment, the pop-
ulation requires significantly less training time (about one order of
magnitude smaller) and that differences across methods during eval-
uation are not as pronounced. During training, we observe that align-
ment is correlated with performance with the independent baselines
collecting the least rewards. Thus, we conclude that our empirical
conclusions generalize to simpler problem settings and that studying
problems with increased task complexity is important for evaluating
methods on the Dec-IMSAP.
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Figure A.24: Computational complexity of the Goal-
coordination game and 100%-aligned for environ-
ments with goals of different difficulty.

Effect of message size

In Figure A.25 we study the effect ofmessage size on the Goal-coordination
game in the 6-landmarks environment by setting it to the smallest
possible value (𝑀 = 21 is equal to the number of goals), a medium
value (𝑀 = 30) and a high value (𝑀 = 40). We observe that evaluation
performance does not vary significantly with message size except for
the fact that small message size leads to slower convergence to the
optimal policy. During training, we observe that small message size
cannot reach perfect alignment and amasses slightly lower rewards.
Thus, we conclude that the message size should be set to a value rel-
atively higher than the number of goals but no further benefits are
gained when it increases beyond that.

The main observation here is that, during training, using a message
size equal to the number of goals (21) leads to sub-optimal alignment
and rewards. By observing the matrix tables for this specific example,
we understood that this is due to a deadlock: if one message-goal
association is learned incorrectly early in training (where incorrectly
means that the goal of the leader and follower are misaligned) then
a column/row is reserved and cannot be used for the correct associa-
tion. This leads to at least two goals being misaligned until the end of
training. When we slightly increase the number of messages, on the
other hand, a wrong association can be fixed later in training, because
there are still enough degrees of freedom to align all messages.

Effect of scaling factor 𝛽

As we described in Section 3.2.7 the scaling factor 𝛽 controls the rel-
ative importance of individual versus cooperative goals: increasing
the value of 𝛽 indicates a proportional decrease in the importance of
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Figure A.25: Effect of message size 𝑀 on the Goal-coordination game in the 6-landmarks environment during evaluation (left) and training
(right) episodes

solving independent goals. To examine the effect of 𝛽 we present the
perfornance of the Goal-coordination game for different values (𝛽 ∈
[1, 2, 4, 8]) in Figure A.26. We observe that, for the Goal-coordination
game, higher values of 𝛽 lead to lower alignment: as cooperative
goals are very rewarding in this case agents with the role of follower
prefer them over individual ones even when the leader communicates
about a cooperative goal. At the same time, low values of 𝛽 lead to
slower convergence to the optimal solution, as agents with the role of
follower are not incentivized enough to choose cooperative goals, as
they still receive rewards when they choose individual goals regard-
less of the leader’s follower. Finally, contrasting the behavior of the
Goal-coordination game to the other baselines in Figure A.26 shows
that, by increasing 𝛽 , the Goal-coordination game can amass more
rewards during training that the centralized baseline. This is not sur-
prising: as the agents learn this risky behavior or aligning cooperative
with individual goals, they experience more rewarding episodes.

Recurrent policies

We have so far employed only feedforward policies in all our methods.
We now study the effect of using a recurrent policy. Our intuition is
that a recurrent policy can facilitate adaptation during the episode,
as an agent can infer the direction the other is moving to and, per-
haps, its goal. In Figure A.27 we compare this recurrent baseline with
the other methods during evaluation and training trials. We observe
that, during training, the recurrent policy with independent sampling
(Recurrent 0% align) performs as badly as the independent feedfor-
ward baseline, while during evaluation, it is the worst-performing
method. Thus, introducing a recurrent policy did not facilitate adapta-
tion. Moreover, as the recurrent policy with centralized training (recur-
rent 100% align) converged tomaximum reward, we can conclude that
even with a recurrent policy the noisy training signal impacts learn-
ing when sampling goals independently. Since this method cannot
lead to alignment, it is also negatively impacted by the large number



A Appendix 205

Timestep, teval
0.2

0.4

0.6

0.8

1.0
Ev

al
ua

tio
n 

Re
wa

rd
, R

ev
al

β= 1
β= 2

β= 4
β= 8

1 2 3 4 5 6
Timestep, 

 teval
1e6

50

100

150

Ep
iso

de
 le

ng
th

, L

0.00

0.25

0.50

0.75

1.00

Tr
ai

ni
ng

 R
ew

ar
d,

 R
tr
ai
n

β= 1
β= 2

β= 4
β= 8

0 1 2 3 4 5 6
Timestep,

  ttrain
1e6

0.00

0.25

0.50

0.75

1.00

Al
ig

nm
en

t, 
A

Figure A.26: Effect of scaling factor 𝛽 on the Goal-coordination game in the 3-landmarks environment during evaluation (left) and training
(right) episodes

of infeasible episodes. Finally, the fact that, with independent sam-
pling, the recurrent policy performed worse than the feedforward one
may mean that it may be even more sensitive to this noisy training
signal. It is, however, possible that it may benefit from further hyper-
parameter tuning, for example an increase in the size of the neural
network.

Learning progress for sampling goals

Throughout the manuscript we have considered that, when an agent
sets its own goal, it does so by randomly sampling within the goal
space. This is the simplest form of intrinsic motivation. An interest-
ing question is how our independent baseline would behave if the
sampling of goals is performed in a more sophisticated way, for exam-
ple based on the competence of an agent. Learning progress is such
a type of intrinsic motivation that has been previously employed in
single-agent settings [250, 407]. Here, we extend learning progress to
our two-agent setting. Our main motivation for this small study is to
test whether introducing learning progress will indirectly lead to goal
alignment. Our intuition is that, by helping the agent focus on easier
tasks first and then tackle the more challenging ones, this approach
may lead to a curriculum from independent (easy) to cooperative (dif-
ficult) goals and that this may facilitate alignment.

At the start of an episode, each agent has a vector 𝐿𝑃 ∈ [−1, 1]𝐾 . Each
coordinate of this vector is an approximation of the derivative in time
of the competence of that agent for solving each goal. Goals are
selected using a 𝜖 − greedy strategy and a proportional probability
matching using the absolute value of the LP. For each agent 𝑖, the
probability of selecting goal 𝑔𝑖 is given by:
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Figure A.27: Comparison of the recurrent policy to the other baselines

𝑝(𝑔𝑖) = 𝜖 × 1
𝐾 + (1 − 𝜖) × |𝐿𝑃𝑎𝑔𝑖 |

∑𝐾
𝑗=1 |𝐿𝑃𝑎𝑔𝑖 |

The use of the absolute value makes agents concentrate both in goals
that are currently being learned or forgotten. In the original imple-
mentation, LP is computed during evaluation rounds which provide a
better signal than training data. However, in our multi-agent context,
goal selection should be decentralized. Therefore, the first change
we make to the strategy is to get rid of the evaluation rounds, and
only estimate the learning progress based on experience from train-
ing. As we also want to work in a fully-decentralized context, at goal
selection time we won’t assume that one agent can have privileged
information from the other (e.g access to other agent’s goal). Each
agent keeps a competence vector 𝐶[𝑛] ∈ [0, 1]𝐾 whose entries 𝐶[𝑛]𝑖 is
the moving average of the rewards obtained when the agent selected
goal 𝑖 for the 𝑛 time during training. This average is defined by a win-
dow length 𝑤 , which is the number of episodes we want to include
for computing it. Then, the learning progress at time 𝑛 is:

𝐿𝑃[𝑛]𝑖 = 𝐶[𝑛]𝑖 − 𝐶[𝑛 − 𝑤]𝑖
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Figure A.28: Learning progress estimate for each
goal and two agents (blue and orange).

Our experiments showed that estimating LP did not improve the per-
formance of the independent baseline. As we observe in Figure A.28
LP values are very noisy and therefore lead to sampling goals rela-
tively randomly, certainly not showing a curriculum from individual to
cooperative goals. This is not surprising: estimating LP in multi-agent
environments is challenging, because the competence of one agent
depends on the competence of other agents as well. One agent’s LP
and competence in a cooperative goal doesn’t only depend on the be-
havior of that agent, but also on the rest of them. Furthermore, this
estimate includes data from episodes where the pair of goals was im-
possible to solve (e.g one agent sampled one cooperative goal and
the other an individual goal that cannot be solved at the same time).
This is particularly evident for cooperative goals: for individual goals
the LP plot look similar in shape to the ones presented in a previous
work for a single-agent setting [250], while for cooperative goals the
curves are too noisy and do not converge.

Cooperative goals only

In this experiment, individual goals are removed both in training and
evaluation. This means that the leader can only sample cooperative
goals and the follower can only choose cooperative goals from its
matrix. We observe the same conclusion as in the experiments with
all goals but with bigger gap between methods both for the 3 land-
marks Fig.A.29 and the 6 landmarks Fig.A.30 cases. Also in this setup
we see that the Goal-coordination game converges to 100% alignment
during training and converges to the same performances as the 100%
alignment method both in term of reward and episode length.

Illustration of the ”risky follower”

We have described the ”risky follower” behavior in Section 3.2.7, where
we defined it as a matching between a leader’s individual goal and a
follower’s cooperative goal and presented the communication matrix
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Figure A.29: Performance for the 3-landmarks environment with only cooperative goals during evaluation (left) and training (right) episodes
for baselines exhibiting different levels of alignment and the Goal-coordination game

that leads to it for the 6-landmarks environment. We now illustrate
it for the 3-landmarks environment (with 𝛽 = 4) in Figure A.31.
We can even see on the training reward in Figure A.32 that the risky
follower behavior is used as we can see that the average reward
of the goal coordination game is higher than the theoretical maxi-
mum of centralized training. In fact, in the case of the centralized
training, the maximum average reward for one agent is capped by
𝑃(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑖𝑛𝑑𝑖𝑣 𝑖𝑑𝑢𝑎𝑙_𝑔𝑜𝑎𝑙)∗𝑅(𝑖𝑛𝑑𝑖𝑣 𝑖𝑑𝑢𝑎𝑙_𝑔𝑜𝑎𝑙_𝑓 𝑢𝑙𝑓 𝑖𝑙𝑙𝑒𝑑)+𝑃(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒_𝑔𝑜𝑎𝑙)∗
𝑅(𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒_𝑔𝑜𝑎𝑙_𝑓 𝑢𝑙𝑓 𝑖𝑙𝑙𝑒𝑑) = 0.5 ∗ 0.25 + 0.5 ∗ 1 = 0.625, and so the av-
erage reward of the sum of the 2 agents is capped by 1.25. While on
the other hand, the Goal-coordination game can allow the follower
agent to get more reward when an individual goal is sampled by the
leader and so have a higher maximum average sum of reward.

Specialization

We defined specialization as the ratio of the episodes in which the
agent went to its preferred landmark when following a cooperative
goal in Section 3.2.7. We now visualize the values of specialization we
reported on the left of Figure A.33.

Both goals observable

The objective of this experiment is to see if : a) agents that observe
both goals can learn to ignore infeasible episodes b) agents that learn
to ignore infeasible episodes can achieve the same performance with
the centralized baseline. This will help us understand if the inde-
pendent baseline fails due to the noisy updates caused by infeasible
episodes. As in our experiments the agent does not know the goal
of the other agent, it might not know if the fail was due to it’s policy
or simply that the goal of the other was incompatible. By giving the
goal of the other agents, we expect agents to learn to discard episode
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Figure A.30: Performance for the 6-landmarks environment with only cooperative goals during evaluation (left) and training (right) episodes
for baselines exhibiting different levels of alignment and the Goal-coordination game

Figure A.31: Example of the ”Risky follower behavior”
in the 3 landmarks case and reward multiplier 𝛽 = 4
. Leader is agent 1 which samples goal [0,0,1] and
send message 0. Agent 1 is the follower and inter-
prets message 0 as [1,0,1] which is cooperative and
compatible with goal of agent 0.
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Figure A.32: Training performances in the 3 land-
marks case and 𝛽 = 4, we can see on left that
goal coordination game exceeds the performances
of the centralized (which attains its max value)
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seeds
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Figure A.35: Value function of agent 1 (in one seed),
in the both goals in the obs baseline, applied to dif-
ferent couples of goals for agent 0 and agent 1.
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goals in the obs in evaluation, in the 6 landmarks,
𝛽 = 2 case
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where goals are incompatible by giving them low value ( expecting no
reward).

In this section we thus study the case where every agent has access to
both its goal and the goal of the other agent in the observation given
to the policy and value network. We study this while being in the
independent sampling case: agents sample their goal independently
of the other at the beginning of the episode.

In this section, we separate couples of cooperative goals into 3 cat-
egories: 1) incompatible goals are goals where there is no overlap
at all, meaning that there is no common landmark in the cooperative
goals of both agents (eg [1,1,0,0,0,0] and [0,0,1,1,0,0]; 2) Partially-aligned
goals are cooperative goals which overlap on 1 of the landmark (eg
[1,1,0,0,0,0] and [0,1,1,0,0,0]); 3) aligned goals are when goals are the
same.

When looking at the distribution of value (given by the trained value
function) on the different categories of couple of cooperative goals (
incompatible, partially aligned and aligned) across 5 seeds in Figure
A.34 , we can clearly see that the training learned to give very low
value to incompatible goals and even to some of the partially com-
patible goals)

Even though training seems to learn that some goal associations are
incompatible, and even though agents seem to specialize in Figure
A.33 the performances of the ”Both goals observable” is still no better
than independent without access to the goal of the other agent in
Figure A.36.

The fact that some values are high for the partially aligned goals case
in Figure A.34 is due to the specialization. If your goals overlap on
only one landmark and you know that the other agent specialized to
go to this common landmark when he has this goal, then you can go
to your other landmark to get the reward. For example, looking at
the matrix of agent 1 in one of the seed in Figure A.35, we can see
that when agent 0 has the goal [1,0,1,0,0,0], agent 1 has a high value
for goals [1,1,0,0,0,0],[1,0,1,0,0,0],[1,0,0,1,0,0],[1,0,0,0,1,0],[1,0,0,0,0,1] which
all contain landmark 1. This seems to indicate that agent 0 has a bias
toward landmark 1 when having goal [1,0,1,0,0,0], which is exploited by
agent 1. For example if agent 0 has goal [1,0,1,0,0,0] and agent 1 has
goal [1,1,0,0,0,0], agent 1 will go to the 2nd landmark as he learned that
agent 0 will go to the first one when he has goal [1,0,1,0,0,0].

Analysis of CTDE

As we saw in themain paper in Section 3.2.7 in our discussion of Figure
3.14, the CTDE baseline performed better than the both-goals condi-
tion, which exhibited performance as bad as the independent base-
line. As we show in Figure A.38, CTDE has, similarly to the both-goals
baseline learned how to detect infeasible episodes. Why does this
method outperform both-goals, then? As we explained in our descrip-
tion of methods in Figure A.22, the two methods differ in two respects:
a) the policies in both-goals are conditioned on both goals while only
on an individual’s goal for the CTDE b) the value function has access
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Figure A.37: Learned value functions of the CTDE
baseline applied to different types of couple of
goals. The boxplots distributions take into account
several couple of goal and several seeds

to, in addition to both goals, the states and actions of both agents. To
disentangle the effect of these two differences, we evaluate an addi-
tional method: a CTDE whose value function is conditioned on both
goals but on an individual’s state and action. We compare the perfor-
mance of these three slightly different methods in Figure A.39. We ob-
serve that the new variant performs as well as CTDE, which indicates
that the worse performance of both-goals is due to its conditioning
on both goals. This could be due to this method requiring further
tuning, due to the increase in the size of the learning space, or due to
the higher difficulty of learning policies conditioned on both goals.

To further understand the behavior of agents under CTDE, we also an-
alyze the specialization of these variants and contrast it to the special-
ization of all baselines in Figure A.33, where we observe that CTDE has
lower specialization. In videos collected during evaluation trials, we
also observed that CTDE agents exhibit intra-episode adaptation. This
indicates that CTDE is a promising approach towards unsupervised
skill acquisition in our multi-agent settings. Yet, it has not reached
the performance of our proposed algorithm, although it introduces
a need for centralization. This is arguably due to the fact that this
method is still plagued by the presence of infeasible episodes.
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in the CTDE baseline, applied to different couple of
goals for agent 0 and agent 1

Figure A.39: Comparing CTDE and two variants: the
drop in performance happens when we condition
the policies on both goals.
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A.7 Appendix: TransformerXL results on craftax

We report in Fig.A.40 and Fig.A.41 the achievement’s success rate along
training of our transformerXL-based agents trainedwith PPO presented
in Sec.4.3. The instructions to reproduce these results are available
in the code repository.

https://github.com/Reytuag/transformerXL_PPO_JAX
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Figure A.40: Achievements succcess rate on craftax [232] of our implementation of tranformerXL base agents trained with PPO (Sec.4.3) over
1e9 timesteps.
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Figure A.41: Achievements succcess rate on craftax [232] of our implementation of tranformerXL base agents trained with PPO (Sec.4.3) over
4e9 timesteps.
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